1
|
Cremer C, Schock F, Failla AV, Birk U. Modulated illumination microscopy: Application perspectives in nuclear nanostructure analysis. J Microsc 2024; 296:121-128. [PMID: 38618985 DOI: 10.1111/jmi.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
The structure of the cell nucleus of higher organisms has become a major topic of advanced light microscopy. So far, a variety of methods have been applied, including confocal laser scanning fluorescence microscopy, 4Pi, STED and localisation microscopy approaches, as well as different types of patterned illumination microscopy, modulated either laterally (in the object plane) or axially (along the optical axis). Based on our experience, we discuss here some application perspectives of Modulated Illumination Microscopy (MIM) and its combination with single-molecule localisation microscopy (SMLM). For example, spatially modulated illumination microscopy/SMI (illumination modulation along the optical axis) has been used to determine the axial extension (size) of small, optically isolated fluorescent objects between ≤ 200 nm and ≥ 40 nm diameter with a precision down to the few nm range; it also allows the axial positioning of such structures down to the 1 nm scale; combined with laterally structured illumination/SIM, a 3D localisation precision of ≤1 nm is expected using fluorescence yields typical for SMLM applications. Together with the nanosizing capability of SMI, this can be used to analyse macromolecular nuclear complexes with a resolution approaching that of cryoelectron microscopy.
Collapse
Affiliation(s)
- Christoph Cremer
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
- Interdisciplinary Centre for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Florian Schock
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Udo Birk
- Institute for Photonics and Robotics (IPR), Department of Applied Future Technologies, University of Applied Sciences of the Grisons (FH Graubünden), Chur, Switzerland
| |
Collapse
|
2
|
Ghanam J, Chetty VK, Zhu X, Liu X, Gelléri M, Barthel L, Reinhardt D, Cremer C, Thakur BK. Single Molecule Localization Microscopy for Studying Small Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205030. [PMID: 36635058 DOI: 10.1002/smll.202205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Small extracellular vesicles (sEVs) are 30-200 nm nanovesicles enriched with unique cargoes of nucleic acids, lipids, and proteins. sEVs are released by all cell types and have emerged as a critical mediator of cell-to-cell communication. Although many studies have dealt with the role of sEVs in health and disease, the exact mechanism of sEVs biogenesis and uptake remain unexplored due to the lack of suitable imaging technologies. For sEVs functional studies, imaging has long relied on conventional fluorescence microscopy that has only 200-300 nm resolution, thereby generating blurred images. To break this resolution limit, recent developments in super-resolution microscopy techniques, specifically single-molecule localization microscopy (SMLM), expanded the understanding of subcellular details at the few nanometer level. SMLM success relies on the use of appropriate fluorophores with excellent blinking properties. In this review, the basic principle of SMLM is highlighted and the state of the art of SMLM use in sEV biology is summarized. Next, how SMLM techniques implemented for cell imaging can be translated to sEV imaging is discussed by applying different labeling strategies to study sEV biogenesis and their biomolecular interaction with the distant recipient cells.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | | | - Xingfu Zhu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Cremer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
3
|
Prakash K, Diederich B, Heintzmann R, Schermelleh L. Super-resolution microscopy: a brief history and new avenues. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210110. [PMID: 35152764 PMCID: PMC8841785 DOI: 10.1098/rsta.2021.0110] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
Super-resolution microscopy (SRM) is a fast-developing field that encompasses fluorescence imaging techniques with the capability to resolve objects below the classical diffraction limit of optical resolution. Acknowledged with the Nobel prize in 2014, numerous SRM methods have meanwhile evolved and are being widely applied in biomedical research, all with specific strengths and shortcomings. While some techniques are capable of nanometre-scale molecular resolution, others are geared towards volumetric three-dimensional multi-colour or fast live-cell imaging. In this editorial review, we pick on the latest trends in the field. We start with a brief historical overview of both conceptual and commercial developments. Next, we highlight important parameters for imaging successfully with a particular super-resolution modality. Finally, we discuss the importance of reproducibility and quality control and the significance of open-source tools in microscopy. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- Kirti Prakash
- Integrated Pathology Unit, Centre for Molecular Pathology, The Royal Marsden Trust and Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Benedict Diederich
- Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Rainer Heintzmann
- Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07743 Jena, Germany
| | | |
Collapse
|