1
|
Komis G, Illés P, Beck M, Šamaj J. Microtubules and mitogen-activated protein kinase signalling. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:650-7. [PMID: 21839668 DOI: 10.1016/j.pbi.2011.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/01/2011] [Accepted: 07/14/2011] [Indexed: 05/08/2023]
Abstract
Subcellular signalling by mitogen-activated protein kinases (MAPKs) was originally regarded as a means to regulate microtubule (MT) organization and dynamics, but with time MAPKs were assigned to broader roles concerning biotic and abiotic signal transductions. MAPKs, which regulate a broad spectrum of substrates including transcription factors and cytoskeletal proteins, belong to complex MAPK cascades, which are mainly involved in plant development and in plant stress responses. The fact that single MAPK can be regulated by more than a single MAPKKK/MAPKK pair make MAPK signalling modules versatile tools in the regulation of microtubule organization. Until recently, the best-studied MAPK module implicated in cytoskeletal regulation is the NACK-PQR pathway in tobacco (Nicotiana tabacum). Homologues of each constituent of this pathway were also discovered in Arabidopsis thaliana. So far, direct phosphorylation of tubulins by MAPKs has not been shown. However, the first MAPK-related substrate involved in the regulation of MT dynamics to have been identified is MT-associated protein MAP65-1.
Collapse
Affiliation(s)
- George Komis
- Institute of General Botany, University of Athens, GR-15784, Greece.
| | | | | | | |
Collapse
|
2
|
Beck M, Komis G, Ziemann A, Menzel D, Šamaj J. Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 189:1069-1083. [PMID: 21155826 DOI: 10.1111/j.1469-8137.2010.03565.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• A mitogen-activated protein kinase kinase kinase (MAPKKK) double mutant, Arabidopsis homologue of nucleus and phragmoplast associated kinase (anp) anp2anp3, and the mitogen-activated protein kinase (MAPK) 4 mutant mpk4 of Arabidopsis thaliana show prominent cytokinetic defects. This prompted the analysis of mitotic and cytokinetic progression as a function of MAPK signalling. Mutants were compared with wild types untreated or treated with the specific MAPKK inhibitor PD98059. • This study included phenotype analysis, expression analysis of the MPK4 promoter, immunofluorescent localization of MPK4, tubulin and MAP65-1, and time-lapse microscopic visualization of the mitotic microtubule (MT) transitions in control, mutant and inhibitor-treated cells. • Mutant and inhibitor-treated cells showed defects in mitosis and cytokinesis, including aberrant spindle and phragmoplast formation and drastically delayed or abortive mitosis and cytokinesis. As a result, bi- and multinucleate cells were formed, ultimately disturbing the vegetative tissue patterning. MPK4 was localized to all stages of the expanding phragmoplast, in a pattern similar to that of its putative substrate MAP65-1. • In this study, MPK4 is shown to be involved in the regulation of mitosis/cytokinesis through modulation of the cell division plane and cytokinetic progression.
Collapse
Affiliation(s)
- Martina Beck
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D53115, Bonn, Germany
| | - George Komis
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D53115, Bonn, Germany
- Institute of General Botany, Faculty of Biology, University of Athens, GR15784, Greece
| | - Anja Ziemann
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D53115, Bonn, Germany
| | - Diedrik Menzel
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D53115, Bonn, Germany
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic
| |
Collapse
|
3
|
Beck M, Komis G, Müller J, Menzel D, Šamaj J. Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. THE PLANT CELL 2010; 22:755-71. [PMID: 20215588 PMCID: PMC2861451 DOI: 10.1105/tpc.109.071746] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/08/2010] [Accepted: 02/27/2010] [Indexed: 05/18/2023]
Abstract
A double homozygous recessive mutant in the Arabidopsis thaliana homologs of nucleus- and phragmoplast-localized kinase 2 (ANP2) and 3 (ANP3) genes and a homozygous recessive mutant in the mitogen-activated protein kinase 4 (MPK4) gene of Arabidopsis exhibit deficiencies in the overall microtubule (MT) organization, which result in abnormal cell growth patterns, such as branching of root hairs and swelling of diffusely growing epidermal cells. Genetic, pharmacological, molecular, cytological, and biochemical analyses show that the major underlying mechanism for these phenotypes is excessive MT stabilization manifested in both mutants as heavy MT bundling, disorientation, and drug stability. The above defects in MAPK signaling result in the adverse regulation of members of the microtubule-associated protein (MAP65) protein family, including strongly diminished phosphorylation of MAP65-1. These data suggest that ANP2/ANP3, MPK4, and the microtubule-associated protein MAP65-1, a putative target of MPK4 signaling, are all essential for the proper organization of cortical microtubules in Arabidopsis epidermal cells.
Collapse
Affiliation(s)
- Martina Beck
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - George Komis
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Department of Botany, Faculty of Biology, University of Athens, GR-15784 Athens, Greece
| | - Jens Müller
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Diedrik Menzel
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic
- Address correspondence to
| |
Collapse
|
4
|
Ning J, Liu S, Hu H, Xiong L. Systematic analysis of NPK1-like genes in rice reveals a stress-inducible gene cluster co-localized with a quantitative trait locus of drought resistance. Mol Genet Genomics 2008; 280:535-46. [PMID: 18813955 DOI: 10.1007/s00438-008-0385-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/09/2008] [Indexed: 11/30/2022]
Abstract
Phosphorylation by protein kinase is a ubiquitous key mechanism in translating external stimuli such as drought stress. NPK1 is a mitogen-activated protein kinase kinase kinase identified in Nicotiana tabacum and plays important roles in cytokinesis and auxin signaling transduction and responses to multiple stresses. Here we report the evolution, structure, and comprehensive expression profile of 21 NPK1-like genes in rice (Oryza sativa L.). Phylogenetic analysis of NPK1-like sequences in rice (OsNPKL), Arabidopsis, and other plants reveals that NPK1-like genes could be classified into three subgroups. Three OsNPKL gene clusters, located on chromosome 1 (OsNPKL1, 2, 3, and 4), 5 (OsNPKL14 and 15), and 10 (OsNPKL19 and 20), respectively, were identified in the rice genome. These clustered genes, which most likely evolved by tandem gene duplication, belong to the same phylogenetic subgroup, with similar genomic structures and conserved motifs in the kinase domain, which is unique to this subgroup. Expression analysis of OsNPKL genes under abiotic stresses suggests that the stress-responsive genes are mainly from the same subgroup. Especially interesting is that all the clustered genes are induced by drought, salt, or cold stress, and a few members are very strongly induced by drought. Some of the clustered genes are also induced by abscisic acid. The gene cluster on chromosome 1 is co-located with a quantitative trait locus (QTL) related to drought resistance. Although the drought-induced expression levels of the four genes in the cluster show no difference between the two parents used for QTL mapping, sequence variation in coding regions of the genes between the parents has provided some clues for further functional characterization of this gene cluster in abiotic stress tolerance in rice.
Collapse
Affiliation(s)
- Jing Ning
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | |
Collapse
|
5
|
Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC. The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2007; 5:e0106. [PMID: 22303230 PMCID: PMC3243368 DOI: 10.1199/tab.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
| | | | | | | | - John C. Walker
- Corresponding author: Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA,
| |
Collapse
|
6
|
Nicole MC, Hamel LP, Morency MJ, Beaudoin N, Ellis BE, Séguin A. MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 2006; 7:223. [PMID: 16945144 PMCID: PMC1574314 DOI: 10.1186/1471-2164-7-223] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/31/2006] [Indexed: 11/30/2022] Open
Abstract
Background As in other eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. These modules rapidly amplify and transduce extracellular signals into various appropriate intracellular responses. While extensive work has been conducted on the post-translational regulation of specific MAPKKs and MAPKs in various plant species, there has been no systematic investigation of the genomic organization and transcriptional regulation of these genes. Results Ten putative poplar MAPKK genes (PtMKKs) and 21 putative poplar MAPK genes (PtMPKs) have been identified and located within the poplar (Populus trichocarpa) genome. Analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profiles of all members of these two gene families were also analyzed in 17 different poplar organs, using gene-specific primers directed at the 3'-untranslated region of each candidate gene and real-time quantitative PCR. Most PtMKKs and PtMPKs were differentially expressed across this developmental series. Conclusion This analysis provides a complete survey of MAPKK and MAPK gene expression profiles in poplar, a large woody perennial plant, and thus complements the extensive expression profiling data available for the herbaceous annual Arabidopsis thaliana. The poplar genome is marked by extensive segmental and chromosomal duplications, and within both kinase families, some recently duplicated paralogous gene pairs often display markedly different patterns of expression, consistent with the rapid evolution of specialized protein functions in this highly adaptive species.
Collapse
Affiliation(s)
- Marie-Claude Nicole
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec, G1V 4C7, Canada
| | - Louis-Philippe Hamel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec, G1V 4C7, Canada
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec, G1V 4C7, Canada
| | - Nathalie Beaudoin
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec, G1V 4C7, Canada
| |
Collapse
|
7
|
Lukowitz W, Roeder A, Parmenter D, Somerville C. A MAPKK Kinase Gene Regulates Extra-Embryonic Cell Fate in Arabidopsis. Cell 2004; 116:109-19. [PMID: 14718171 DOI: 10.1016/s0092-8674(03)01067-5] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Arabidopsis zygote divides asymmetrically into an embryonic apical cell and a basal cell with mostly extra-embryonic fate. This fundamental asymmetry sets the stage for further embryonic development, but the events mediating it are poorly understood. We have identified a MAPKK kinase gene, named YODA, that promotes extra-embryonic cell fates in the basal lineage. In loss-of-function mutants, the zygote does not elongate properly, and the cells of the basal lineage are eventually incorporated into the embryo instead of differentiating the extra-embryonic suspensor. Gain-of-function alleles cause exaggerated growth of the suspensor and can suppress embryonic development to a degree where no recognizable proembryo is formed. Our results imply that a MAP kinase cascade acts as a molecular switch promoting extra-embryonic fate.
Collapse
Affiliation(s)
- Wolfgang Lukowitz
- Department of Plant Biology, 260 Panama Street, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The plant microtubule cytoskeleton forms unique arrays during cell division and morphogenesis. Recent studies have addressed the biogenesis, turnover, spatio-temporal organisation and cellular function of microtubules. The results suggest that both conserved eukaryotic mechanisms and plant-specific modifications determine microtubule dynamics and function.
Collapse
Affiliation(s)
- Ulrike Mayer
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076, Tübingen, Germany.
| | | |
Collapse
|
9
|
Abstract
This is an auspicious time for plant cell biology. We have the recent genome sequence of the model plant Arabidopsis, together with powerful new sets of tools that include functional genomics and the dynamic imaging of green fluorescent protein (GFP)–conjugated proteins by confocal microscopy. We are well placed indeed for uncovering the ways in which all genes act out their roles within individual cells. It is the combinatorial properties of these individual cells that underpin both the higherorder processes of plant growth and development and of plant evolution. At a crucial level in the hierarchy of explanations and structures, between the linear DNA sequence at one extreme and whole plant phenomena at the other, lies the cell. It is to this cellular level, to the irreducible unit of life, that this collection of papers is addressed, literally ‘between genome and plant’. Most of the major conceptual advances in our understanding of cell biology have come from work with animal and fungal systems. The ways in which membranes create dynamic compartments within cells and the role of the cytoskeleton in providing an ordering framework are familiar from the textbooks. But plant cells have special features.
Collapse
Affiliation(s)
- Keith Roberts
- Department of Cell Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, Norfolk NR4 7UH, UK
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| |
Collapse
|