1
|
Zhang F, Joiner S, Linehan JM, Pintilii F, Nazari T, Argentina F, Preston C, Taema M, Cunningham TJ, Asante EA, Mok T, Mead S, Brandner S, Collinge J, Wadsworth JD. Isolation of a novel human prion strain from a PRNP codon 129 heterozygous vCJD patient. PLoS Pathog 2025; 21:e1012904. [PMID: 39977481 PMCID: PMC11841882 DOI: 10.1371/journal.ppat.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), caused variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. Codon 129 polymorphism of the human prion protein gene (PRNP), encoding either methionine (M) or valine (V), dictates the propagation of distinct human prion strains and up to now all but one neuropathologically confirmed vCJD patients have had a 129MM genotype. Concordant with this genetic association, transgenic modelling has established that human PrP 129V is incompatible with the vCJD prion strain and that depending on codon 129 genotype, primary human infection with BSE prions may, in addition to vCJD, result in sporadic CJD-like or novel phenotypes. In 2016 we saw the first neuropathologically confirmed case of vCJD in a patient with a codon 129MV genotype. This patient's neuropathology and molecular strain type were pathognomonic of vCJD but their clinical presentation and neuroradiological features were more typical of sporadic CJD, suggestive of possible co-propagation of another prion strain. Here we report the transmission properties of prions from the brain and lymphoreticular tissues of the 129MV vCJD patient. Primary transmissions into transgenic mice expressing human PrP with different codon 129 genotypes mainly produced neuropathological and molecular phenotypes congruent to those observed in the same lines of mice challenged with prions from 129MM vCJD patient brain, indicative that the vCJD prion strain was the dominant propagating prion strain in the patient's brain. Remarkably however, some transgenic mice challenged with 129MV vCJD patient brain propagated a novel prion strain type which at secondary passage was uniformly lethal in mice of all three PRNP codon 129 genotypes after similar short mean incubation periods. These findings establish that cattle BSE prions can trigger the co-propagation of distinct prion strains in humans.
Collapse
Affiliation(s)
- Fuquan Zhang
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Jacqueline M. Linehan
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Florin Pintilii
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tamsin Nazari
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Fabio Argentina
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Connor Preston
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Maged Taema
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Emmanuel A. Asante
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| | - Tzehow Mok
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
- National Prion Clinic, National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Jonathan D.F. Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
2
|
Westermark GT, Nyström E, Nyström S, Nilsson KPR, Hammarström P, Westermark P. The question of strains in AA amyloidosis. Sci Rep 2025; 15:3684. [PMID: 39881136 PMCID: PMC11779915 DOI: 10.1038/s41598-025-87239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA. Glomerular amyloid deposition of the kidney defines the common form, while in the vascular type amyloid deposits are massive in the renal medulla and in arteries throughout the body, while glomeruli are spared. By electron microscopy the two types appeared morphologically different. The common type was composed of dispersed fibrils which tended to be clustered whereas the vascular type was composed of longer and more distinct less clustered fibrils. Staining with fluorescent amyloid binding ligands analyzed by hyperspectral microscopy showed differential staining patterns between the two groups supporting the notion of human AA amyloid strains. AA amyloid staining was significantly different from systemic AL amyloid. Both types of AA (common and vascular) and AL amyloid fibrils were isolated and used to seed mouse AA amyloid in groups of inflamed NMRI mice (n = 9-10 per group). All but two mice showed amyloid deposits in the spleen induced by the human seeds. Amyloid binding ligand analysis was applied on the splenic amyloid deposits and revealed no clear significant difference between mice seeded with AA fibrils from different donors being vascular or common, but the AA deposits of mice given AL fibrils showed significantly different amyloid fluorescent signals compared to all groups of mice receiving AA fibrils. The combined results support the hypothesis that AA amyloid fibril structures can vary depending on the seed and may manifest as amyloid strains.
Collapse
Affiliation(s)
| | - Ebba Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.
| |
Collapse
|
3
|
Kothekar H, Chaudhary K. Kuru Disease: Bridging the Gap Between Prion Biology and Human Health. Cureus 2024; 16:e51708. [PMID: 38313950 PMCID: PMC10838565 DOI: 10.7759/cureus.51708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
This article explores the intriguing case of Kuru disease, a rare and fatal prion disease that once afflicted the Fore people of Papua New Guinea. Scientists are still perplexed as to the origins of Kuru because efforts to discover infectious agents like viruses have been ineffective. Initial research revealed similarities between Kuru and scrapie, a neurological disorder that affects sheep, suggesting potential similarities between the two diseases. In further research, experiments in which chimpanzee brain tissue from Kuru patients was implanted led to the development of Kuru-like symptoms in the animals, suggesting a transmissible component to the condition. Furthermore, data collected from epidemiological studies highlights a drop in Kuru transmission, especially after the Fore people stopped engaging in cannibalism, and the disease showed different incubation times that affected persons within particular age groups. Neuropathological tests in the infected brain tissue have found typical intracellular vacuoles, spongiform alterations, and amyloid plaques. According to studies, Kuru susceptibility has been linked genetically to particular PRNP gene variations. Kuru and other prion disorders have few effective treatments currently, underlining the vital need for early identification. Scientists have created sensitive detection techniques to stop the spread of prion diseases and looked into possible inhibitors. Hypochlorous acid, in particular, has shown potential in cleaning processes. Besides making great progress in understanding Kuru, there are still many unresolved issues surrounding its causes, transmission, and management. The terms "kuru disease," "human prion disease," "transmissible spongiform encephalopathies," and "Creutzfeldt-Jakob syndrome" were used to search the studies; papers unrelated to the review article were removed. Eighty-four articles are included in the review text to fully understand the complexities of this puzzling disease and its consequences for prion biology and human health; additional study is essential.
Collapse
Affiliation(s)
- Himanshu Kothekar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kirti Chaudhary
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Santiago E, Moreno DF, Acar M. Phenotypic plasticity as a facilitator of microbial evolution. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac020. [PMID: 36465837 PMCID: PMC9709823 DOI: 10.1093/eep/dvac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Tossed about by the tides of history, the inheritance of acquired characteristics has found a safe harbor at last in the rapidly expanding field of epigenetics. The slow pace of genetic variation and high opportunity cost associated with maintaining a diverse genetic pool are well-matched by the flexibility of epigenetic traits, which can enable low-cost exploration of phenotypic space and reactive tuning to environmental pressures. Aiding in the generation of a phenotypically plastic population, epigenetic mechanisms often provide a hotbed of innovation for countering environmental pressures, while the potential for genetic fixation can lead to strong epigenetic-genetic evolutionary synergy. At the level of cells and cellular populations, we begin this review by exploring the breadth of mechanisms for the storage and intergenerational transmission of epigenetic information, followed by a brief review of common and exotic epigenetically regulated phenotypes. We conclude by offering an in-depth coverage of recent papers centered around two critical issues: the evolvability of epigenetic traits through Baldwinian adaptive phenotypic plasticity and the potential for synergy between epigenetic and genetic evolution.
Collapse
Affiliation(s)
- Emerson Santiago
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- *Correspondence address. Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA. Tel: +90 (543) 304-0388; E-mail:
| |
Collapse
|
5
|
Huntington's disease: lessons from prion disorders. J Neurol 2021; 268:3493-3504. [PMID: 33625583 DOI: 10.1007/s00415-021-10418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Decades of research on the prion protein and its associated diseases have caused a paradigm shift in our understanding of infectious agents. More recent years have been marked by a surge of studies supporting the application of these findings to a broad array of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here, we present evidence to suggest that Huntington's disease, a monogenic disorder of the central nervous system, shares features with prion disorders and that, it too, may be governed by similar mechanisms. We further posit that these similarities could suggest that, like other common neurodegenerative disorders, sporadic forms of Huntington's disease may exist.
Collapse
|
6
|
Mysterud A, Ytrehus B, Tranulis MA, Rauset GR, Rolandsen CM, Strand O. Antler cannibalism in reindeer. Sci Rep 2020; 10:22168. [PMID: 33335134 PMCID: PMC7747554 DOI: 10.1038/s41598-020-79050-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases constitute a class of invariably fatal and degenerative encephalopathies. Chronic Wasting Disease (CWD) is a contagious prion disease among cervids, which is spreading and causing marked population declines in USA and Canada. The first outbreak of CWD in Europe was discovered in a reindeer population in Norway in 2016. In the worst-case scenario with continental-wide spreading of CWD in Eurasia, an annual harvest of around 4 million cervids is at stake only in Europe, with huge economic and cultural significance. An in situ origin of CWD was suspected, and it appear urgent to identify the likely cause to prevent future emergences. Here, we document the novel phenomenon of extensive antler cannibalism prior to shedding among reindeer in the CWD-infected population. The extent of antler cannibalism increased over the last decades when CWD emerged, and included ingestion of vascularized antlers. Ingestion of tissues from conspecifics is a risk factor for the emergence of prion diseases, where the presence of extensive antler cannibalism opens the intriguing possibility of a ‘Kuru-analogue’ origin of CWD among the reindeer in Europe. Based on general insight on pathology of prion diseases and strain selection processes, we propose an hypothesis for how contagious CWD may emerge from sporadic CWD under the unique epidemiological conditions we document here. More research is required to document the presence of prions in reindeer antlers, and whether antler cannibalism actually led to a strain selection process and the emergence of a contagious form of CWD from a sporadic form of CWD.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, 0102, Oslo, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA), Torgarden, P. O. Box 5685, 7485, Trondheim, Norway
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Prion diseases are rapidly progressive neurodegenerative conditions that can be difficult to diagnose and are transmissible under specific circumstances. The authors will provide background regarding prion disease and focus on diagnostic tools. RECENT FINDINGS Prion disease is caused by misfolded prion protein. The three possible causes of prion disease include sporadic (85%), genetic (10-15%), and acquired (<1%). Acquired prion diseases include kuru, iatrogenic, and variant Creutzfeldt-Jakob disease. Prion diseases differ in their clinical manifestation, neuropathology, and diagnostic test results. A variety of recent diagnostic tools have evolved that allow more reliable antemortem diagnosis of prion disease such as brain MRI and cerebrospinal fluid real-time quaking-induced conversion. Special infectivity guidelines must be followed when dealing with central nervous system tissue, but only standard precautions are needed for routine clinical care of patients with prion disease. SUMMARY The only way to definitely diagnose prion disease and determine its type is via neuropathologic examination. However, brain MRI and cerebrospinal fluid real-time quaking-induced conversion have drastically increased diagnostic accuracy and are important tests to use when evaluating patients with suspected prion disease.
Collapse
|
8
|
Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species. mBio 2019; 10:mBio.01091-19. [PMID: 31337719 PMCID: PMC6650550 DOI: 10.1128/mbio.01091-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion-related transmissible spongiform encephalopathy of cervids, including deer, elk, reindeer, sika deer, and moose. CWD has been confirmed in at least 26 U.S. states, three Canadian provinces, South Korea, Finland, Norway, and Sweden, with a notable increase in the past 5 years. The continued geographic spread of this disease increases the frequency of exposure to CWD prions among cervids, humans, and other animal species. Chronic wasting disease (CWD) is a prion-related transmissible spongiform encephalopathy of cervids, including deer, elk, reindeer, sika deer, and moose. CWD has been confirmed in at least 26 U.S. states, three Canadian provinces, South Korea, Finland, Norway, and Sweden, with a notable increase in the past 5 years. The continued geographic spread of this disease increases the frequency of exposure to CWD prions among cervids, humans, and other animal species. Since CWD is now an established wildlife disease in North America, proactive steps, where possible, should be taken to limit transmission of CWD among animals and reduce the potential for human exposure.
Collapse
|
9
|
Kuru, the First Human Prion Disease. Viruses 2019; 11:v11030232. [PMID: 30866511 PMCID: PMC6466359 DOI: 10.3390/v11030232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Kuru, the first human prion disease was transmitted to chimpanzees by D. Carleton Gajdusek (1923–2008). In this review, we summarize the history of this seminal discovery, its anthropological background, epidemiology, clinical picture, neuropathology, and molecular genetics. We provide descriptions of electron microscopy and confocal microscopy of kuru amyloid plaques retrieved from a paraffin-embedded block of an old kuru case, named Kupenota. The discovery of kuru opened new vistas of human medicine and was pivotal in the subsequent transmission of Creutzfeldt–Jakob disease, as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
|
10
|
A Bioluminescent Cell Assay to Quantify Prion Protein Dimerization. Sci Rep 2018; 8:14178. [PMID: 30242186 PMCID: PMC6155003 DOI: 10.1038/s41598-018-32581-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
The prion protein (PrP) is a cell surface protein that in disease misfolds and becomes infectious causing Creutzfeldt-Jakob disease in humans, scrapie in sheep, and chronic wasting disease in deer and elk. Little is known regarding the dimerization of PrP and its role in disease. We developed a bioluminescent prion assay (BPA) to quantify PrP dimerization by bimolecular complementation of split Gaussia luciferase (GLuc) halves that are each fused to PrP. Fusion constructs between PrP and N- and C-terminal GLuc halves were expressed on the surface of RK13 cells (RK13-DC cells) and dimerized to yield a bioluminescent signal that was decreased in the presence of eight different antibodies to PrP. Dimerization of PrP was independent of divalent cations and was induced under stress. Challenge of RK13-DC cells with seven different prion strains did not lead to detectable infection but was measurable by bioluminescence. Finally, we used BPA to screen a compound library for compounds inhibiting PrP dimerization. One of the most potent compounds to inhibit PrP dimerization was JTC-801, which also inhibited prion replication in RML-infected ScN2a and SMB cells with an EC50 of 370 nM and 220 nM, respectively. We show here that BPA is a versatile tool to study prion biology and to identify anti-prion compounds.
Collapse
|
11
|
Joiner S, Asante EA, Linehan JM, Brock L, Brandner S, Bellworthy SJ, Simmons MM, Hope J, Collinge J, Wadsworth JDF. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein. J Neurol Sci 2017; 386:4-11. [PMID: 29406965 PMCID: PMC5946165 DOI: 10.1016/j.jns.2017.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 11/02/2022]
Abstract
The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe.
Collapse
Affiliation(s)
- Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | | | | | - James Hope
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | |
Collapse
|
12
|
Wadsworth JDF, Adamson G, Joiner S, Brock L, Powell C, Linehan JM, Beck JA, Brandner S, Mead S, Collinge J. Methods for Molecular Diagnosis of Human Prion Disease. Methods Mol Biol 2017; 1658:311-346. [PMID: 28861799 DOI: 10.1007/978-1-4939-7244-9_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations, and they are classified by both clinicopathological syndrome and etiology, with subclassification according to molecular criteria. Here, we describe updated procedures that are currently used within the MRC Prion Unit at UCL to determine a molecular diagnosis of human prion disease. Sequencing of the PRNP open reading frame to establish the presence of pathogenic mutations is described, together with detailed methods for immunoblot or immunohistochemical determination of the presence of abnormal prion protein in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK.
| | - Gary Adamson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Caroline Powell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jonathan A Beck
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
13
|
Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res 2016; 47:88. [PMID: 27641251 PMCID: PMC5024462 DOI: 10.1186/s13567-016-0375-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 02/24/2024] Open
Abstract
Chronic wasting disease (CWD) is a fatal contagious prion disease in cervids that is enzootic in some areas in North America. The disease has been found in deer, elk and moose in the USA and Canada, and in South Korea following the importation of infected animals. Here we report the first case of CWD in Europe, in a Norwegian free-ranging reindeer in Southern Norway. The origin of the disease is unknown. Until now a low number of cervids, and among them a few reindeer, have been tested for CWD in Norway. Therefore the prevalence of CWD is unknown.
Collapse
Affiliation(s)
- Sylvie L Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, ON, Canada
| | - Marion Simmons
- Department of Pathology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Sluppen, 7485, Trondheim, Norway
| | - Turid Vikøren
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| |
Collapse
|
14
|
Kobayashi A, Parchi P, Yamada M, Mohri S, Kitamoto T. Neuropathological and biochemical criteria to identify acquired Creutzfeldt-Jakob disease among presumed sporadic cases. Neuropathology 2015; 36:305-10. [PMID: 26669818 DOI: 10.1111/neup.12270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022]
Abstract
As an experimental model of acquired Creutzfeldt-Jakob disease (CJD), we performed transmission studies of sporadic CJD using knock-in mice expressing human prion protein (PrP). In this model, the inoculation of the sporadic CJD strain V2 into animals homozygous for methionine at polymorphic codon 129 (129 M/M) of the PRNP gene produced quite distinctive neuropathological and biochemical features, that is, widespread kuru plaques and intermediate type abnormal PrP (PrP(Sc) ). Interestingly, this distinctive combination of molecular and pathological features has been, to date, observed in acquired CJD but not in sporadic CJD. Assuming that these distinctive phenotypic traits are specific for acquired CJD, we revisited the literature and found two cases showing widespread kuru plaques despite the 129 M/M genotype, in a neurosurgeon and in a patient with a medical history of neurosurgery without dura mater grafting. By Western blot analysis of brain homogenates, we revealed the intermediate type of PrP(Sc) in both cases. Furthermore, transmission properties of brain extracts from these two cases were indistinguishable from those of a subgroup of dura mater graft-associated iatrogenic CJD caused by infection with the sporadic CJD strain V2. These data strongly suggest that the two atypical CJD cases, previously thought to represent sporadic CJD, very likely acquired the disease through exposure to prion-contaminated brain tissues. Thus, we propose that the distinctive combination of 129 M/M genotype, kuru plaques, and intermediate type PrP(Sc) , represents a reliable criterion for the identification of acquired CJD cases among presumed sporadic cases.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Comparative Pathology, Hokkaido University Graduate School of Veterinary Medicine, Sapporo, Japan
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druyeh R, Wadsworth JDF, Brandner S, Hyare H, Mead S, Collinge J. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 2015; 138:3386-99. [PMID: 26268531 PMCID: PMC4620512 DOI: 10.1093/brain/awv235] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022] Open
Abstract
Cases of iatrogenic CJD still occur in the UK 30 years after administration of human pituitary-derived growth hormone ceased. Rudge et al. report a change over time in genotype profile at polymorphic codon 129 of the human prion protein gene in UK patients, distinct from that seen in other countries. Patients with iatrogenic Creutzfeldt-Jakob disease due to administration of cadaver-sourced growth hormone during childhood are still being seen in the UK 30 years after cessation of this treatment. Of the 77 patients who have developed iatrogenic Creutzfeldt-Jakob disease, 56 have been genotyped. There has been a marked change in genotype profile at polymorphic codon 129 of the prion protein gene (PRNP) from predominantly valine homozygous to a mixed picture of methionine homozygous and methionine-valine heterozygous over time. The incubation period of iatrogenic Creutzfeldt-Jakob disease is significantly different between all three genotypes. This experience is a striking contrast with that in France and the USA, which may relate to contamination of different growth hormone batches with different strains of human prions. We describe the clinical, imaging, molecular and autopsy features in 22 of 24 patients who have developed iatrogenic Creutzfeldt-Jakob disease in the UK since 2003. Mean age at onset of symptoms was 42.7 years. Gait ataxia and lower limb dysaesthesiae were the most frequent presenting symptoms. All had cerebellar signs, and the majority had myoclonus and lower limb pyramidal signs, with relatively preserved cognitive function, when first seen. There was a progressive decline in neurological and cognitive function leading to death after 5–32 (mean 14) months. Despite incubation periods approaching 40 years, the clinical duration in methionine homozygote patients appeared to be shorter than that seen in heterozygote patients. MRI showed restricted diffusion in the basal ganglia, thalamus, hippocampus, frontal and the paracentral motor cortex and cerebellar vermis. The electroencephalogram was abnormal in 15 patients and cerebrospinal fluid 14-3-3 protein was positive in half the patients. Neuropathological examination was conducted in nine patients. All but one showed synaptic prion deposition with numerous kuru type plaques in the basal ganglia, anterior frontal and parietal cortex, thalamus, basal ganglia and cerebellum. The patient with the shortest clinical duration had an atypical synaptic deposition of abnormal prion protein and no kuru plaques. Taken together, these data provide a remarkable example of the interplay between the strain of the pathogen and host prion protein genotype. Based on extensive modelling of human prion transmission barriers in transgenic mice expressing human prion protein on a mouse prion protein null background, the temporal distribution of codon 129 genotypes within the cohort of patients with iatrogenic Creutzfeldt-Jakob disease in the UK suggests that there was a point source of infecting prion contamination of growth hormone derived from a patient with Creutzfeldt-Jakob disease expressing prion protein valine 129.
Collapse
Affiliation(s)
- Peter Rudge
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- 3 Division of Neuropathology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Peter Adlard
- 4 UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Bjurstrom
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Diana Caine
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 5 Department of Neuropsychology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Jessica Lowe
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Penny Norsworthy
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holger Hummerich
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ron Druyeh
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- 3 Division of Neuropathology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Harpreet Hyare
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
16
|
The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol 2015; 130:159-70. [PMID: 26022925 DOI: 10.1007/s00401-015-1447-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 02/04/2023]
Abstract
Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.
Collapse
|
17
|
Westermark GT, Fändrich M, Westermark P. AA amyloidosis: pathogenesis and targeted therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:321-44. [PMID: 25387054 DOI: 10.1146/annurev-pathol-020712-163913] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The understanding of why and how proteins misfold and aggregate into amyloid fibrils has increased considerably during recent years. Central to amyloid formation is an increase in the frequency of the β-sheet structure, leading to hydrogen bonding between misfolded monomers and creating a fibril that is comparably resistant to degradation. Generation of amyloid fibrils is nucleation dependent, and once formed, fibrils recruit and catalyze the conversion of native molecules. In AA amyloidosis, the expression of cytokines, particularly interleukin 6, leads to overproduction of serum amyloid A (SAA) by the liver. A chronically high plasma concentration of SAA results in the aggregation of amyloid into cross-β-sheet fibrillar deposits by mechanisms not fully understood. Therefore, AA amyloidosis can be thought of as a consequence of long-standing inflammatory disease. This review summarizes current knowledge about AA amyloidosis. The systemic amyloidoses have been regarded as intractable conditions, but improvements in the understanding of fibril composition and pathogenesis over the past decade have led to the development of a number of different therapeutic approaches with promising results.
Collapse
|
18
|
Liberski PP. Kuru: a journey back in time from papua new Guinea to the neanderthals' extinction. Pathogens 2013; 2:472-505. [PMID: 25437203 PMCID: PMC4235695 DOI: 10.3390/pathogens2030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 11/30/2022] Open
Abstract
Kuru, the first human transmissible spongiform encephalopathy was transmitted to chimpanzees by D. Carleton Gajdusek (1923-2008). In this review, I briefly summarize the history of this seminal discovery along its epidemiology, clinical picture, neuropathology and molecular genetics. The discovery of kuru opened new windows into the realms of human medicine and was instrumental in the later transmission of Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker disease as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
Affiliation(s)
- Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Kosciuszki st. 4, Lodz 90-419, Poland.
| |
Collapse
|
19
|
Saba R, Booth S. The Genetics of Susceptibility to Variant Creutzfeldt-Jakob Disease. Public Health Genomics 2013; 16:17-24. [DOI: 10.1159/000345203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Rodríguez-Rodríguez C, Telpoukhovskaia M, Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Millar CM, Makris M. Dealing with the uncertain risk of variant Creutzfeldt-Jakob disease transmission by coagulation replacement products. Br J Haematol 2012; 158:442-52. [DOI: 10.1111/j.1365-2141.2012.09201.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Mike Makris
- Department of Haematology; Sheffield Haemophilia and Thrombosis Centre; Sheffield; UK
| |
Collapse
|
22
|
|
23
|
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are the names given to the group of fatal neurodegenerative disorders that includes kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal and sporadic familial insomnia and the novel prion disease variable protease-sensitive prionopathy (PSPr) in humans. Kuru was restricted to natives of the Foré linguistic group in Papua New Guinea and spread by ritualistic endocannibalism. CJD appears as sporadic, familial (genetic or hereditary) and infectious (iatrogenic) forms. Variant CJD is a zoonotic CJD type and of major public health importance, which resulted from transmission from bovine spongiform encephalopathy (BSE) through ingestion of contaminated meat products. GSS is a slowly progressive hereditary autosomal dominant disease and the first human TSE in which a mutation in a gene encoding for prion protein (PrP) was discovered. The rarest human prion disease is fatal insomnia, which may occur, in genetic and sporadic form. More recently a novel prion disease variable protease-sensitive prionopathy (PSPr) was described in humans.TSEs are caused by a still incompletely defined infectious agent known as a "prion" which is widely regarded to be an aggregate of a misfolded isoform (PrP(Sc)) of a normal cellular glycoprotein (PrP(c)). The conversion mechanism of PrP(c) into PrP(Sc) is still not certain.
Collapse
Affiliation(s)
- Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka st. 8/10, 92-216, Lodz, Poland,
| | | |
Collapse
|
24
|
Mackay GA, Knight RS, Ironside JW. The molecular epidemiology of variant CJD. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2011; 2:217-227. [PMID: 21915360 PMCID: PMC3166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
The emergence of the novel prion diseases bovine spongiform encephalopathy (BSE) and, subsequently, variant Creutzfeldt-Jakob disease (vCJD) in epidemic forms has attracted much scientific attention. The oral transmission of these disorders, the causative relationship of vCJD to BSE and the resistance of the transmissible agents in both disorders to conventional forms of decontamination has caused great public health concern. The size of the still emerging vCJD epidemic is thankfully much lower than some early published estimates. This paper reviews current knowledge of the factors that influence the development of vCJD: the properties of the infectious agent; the route of inoculation and individual susceptibility factors. The current epidemiological data are reviewed, along with relevant animal transmission studies. In terms of genetic susceptibility, the best characterised is the common single nucleotide polymorphism at codon 129 of prion protein gene. Current biomarkers and future areas of research will be discussed. These issues are important in informing precautionary measures and the ongoing monitoring of vCJD.
Collapse
Affiliation(s)
- Graham A Mackay
- National CJD Research and Surveillance unit, Western General Hospital Crewe road, Edinburgh, EH4 2XU, UK
| | | | | |
Collapse
|
25
|
Wadsworth JDF, Asante EA, Collinge J. Review: contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 2011; 36:576-97. [PMID: 20880036 PMCID: PMC3017745 DOI: 10.1111/j.1365-2990.2010.01129.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease.
Collapse
Affiliation(s)
- J D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | |
Collapse
|
26
|
Wadsworth JDF, Collinge J. Molecular pathology of human prion disease. Acta Neuropathol 2011; 121:69-77. [PMID: 20694796 PMCID: PMC3015177 DOI: 10.1007/s00401-010-0735-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health.
Collapse
Affiliation(s)
- Jonathan D. F. Wadsworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
27
|
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are fatal neurodegenerative disorders. In aetiological viewpoint, human prion diseases are classified into 1) sporadic Creutzfeldt-Jakob disease (CJD) which comprises 80-90% of the total population of human prion disaeses, 2) inherited forms, and 3) acquired types by prion-contaminated surgical instruments, biopharmaceuticals or foodstuffs. The diseases cause an accumulation of the disease-associated form(s) of prion protein (PrP(Sc)) in the central nervous system. PrP(Sc) is regarded as the entity of prion agents and generally exerts infectivity, irrespective of its origin being from the sporadic cases or the inherited cases. Variant CJD (vCJD), first identified in the United Kingdom (UK) in 1996, is an acquired type of human CJD by oral intake of BSE prion. Cumulative numbers of 215 patients in the world have been reported for definite or probable vCJD cases according to the UK National Creutzfeldt-Jakob Disease Surveillance Unit by September, 2009. Different from sporadic CJD cases, vCJD patients show an accumulation of PrP(Sc) in spleen and tonsils. Such distribution of PrP(Sc) in lymphoid tissues raised clinical concern about the potential infectivity in the blood or blood components used for blood transfusion. To date, five instances of probable transfusion-mediated transmission of vCJD prion have been found in UK. Here we review the past and the present issues about the acquired human prion diseases.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
28
|
Wasmer C, Schütz A, Loquet A, Buhtz C, Greenwald J, Riek R, Böckmann A, Meier BH. The Molecular Organization of the Fungal Prion HET-s in Its Amyloid Form. J Mol Biol 2009; 394:119-27. [DOI: 10.1016/j.jmb.2009.09.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
|
29
|
Westermark GT, Westermark P. Serum amyloid A and protein AA: molecular mechanisms of a transmissible amyloidosis. FEBS Lett 2009; 583:2685-90. [PMID: 19393650 DOI: 10.1016/j.febslet.2009.04.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 01/24/2023]
Abstract
Systemic AA-amyloidosis is a complication of chronic inflammatory diseases and the fibril protein AA derives from the acute phase reactant serum AA. AA-amyloidosis can be induced in mice by an inflammatory challenge. The lag phase before amyloid develops can be dramatically shortened by administration of a small amount of amyloid fibrils. Systemic AA-amyloidosis is transmissible in mice and may be so in humans. Since transmission can cross species barriers it is possible that AA-amyloidosis can be induced by amyloid in food, e.g. foie gras. In mice, development of AA-amyloidosis can also be accelerated by other components with amyloid-like properties. A new possible risk factor may appear with synthetically made fibrils from short peptides, constructed for tissue repair.
Collapse
Affiliation(s)
- Gunilla T Westermark
- Division of Cell Biology, Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
30
|
Lloyd SE, Maytham EG, Pota H, Grizenkova J, Molou E, Uphill J, Hummerich H, Whitfield J, Alpers MP, Mead S, Collinge J. HECTD2 is associated with susceptibility to mouse and human prion disease. PLoS Genet 2009; 5:e1000383. [PMID: 19214206 PMCID: PMC2633041 DOI: 10.1371/journal.pgen.1000383] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/15/2009] [Indexed: 01/22/2023] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders, which include Scrapie, Bovine Spongiform Encephalopathy (BSE), Creutzfeldt-Jakob Disease (CJD), and kuru. They are characterised by a prolonged clinically silent incubation period, variation in which is determined by many factors, including genetic background. We have used a heterogeneous stock of mice to identify Hectd2, an E3 ubiquitin ligase, as a quantitative trait gene for prion disease incubation time in mice. Further, we report an association between HECTD2 haplotypes and susceptibility to the acquired human prion diseases, vCJD and kuru. We report a genotype-associated differential expression of Hectd2 mRNA in mouse brains and human lymphocytes and a significant up-regulation of transcript in mice at the terminal stage of prion disease. Although the substrate of HECTD2 is unknown, these data highlight the importance of proteosome-directed protein degradation in neurodegeneration. This is the first demonstration of a mouse quantitative trait gene that also influences susceptibility to human prion diseases. Characterisation of such genes is key to understanding human risk and the molecular basis of incubation periods.
Collapse
Affiliation(s)
- Sarah E. Lloyd
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Emma G. Maytham
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Hirva Pota
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Julia Grizenkova
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Eleni Molou
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - James Uphill
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Holger Hummerich
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Jerome Whitfield
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Michael P. Alpers
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
- Centre for International Health, Curtin University, Perth, Australia
| | - Simon Mead
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
| | - John Collinge
- MRC Prion Unit, University College London Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Diseases, University College London Institute of Neurology, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Collinge J. Review. Lessons of kuru research: background to recent studies with some personal reflections. Philos Trans R Soc Lond B Biol Sci 2008; 363:3689-96. [PMID: 18849283 PMCID: PMC2577136 DOI: 10.1098/rstb.2008.0121] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The widespread exposure of the UK population to bovine spongiform encephalopathy prions, and the potential consequences for public health, led to a renewed interest in kuru, the principal example of epidemic human prion disease. Kuru research in Papua New Guinea was expanded to study the range of incubation periods possible in human prion infection, to investigate maternal and other possible natural routes of transmission, to characterize genetic susceptibility and resistance factors and to gain insights into the peripheral pathogenesis of orally acquired prion disease in humans. Although now essentially over, the kuru epidemic continues to provide important lessons.
Collapse
Affiliation(s)
- John Collinge
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
32
|
Affiliation(s)
- John Collinge
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | |
Collapse
|
33
|
Brandner S, Whitfield J, Boone K, Puwa A, O'Malley C, Linehan JM, Joiner S, Scaravilli F, Calder I, P Alpers M, Wadsworth JDF, Collinge J. Central and peripheral pathology of kuru: pathological analysis of a recent case and comparison with other forms of human prion disease. Philos Trans R Soc Lond B Biol Sci 2008; 363:3755-63. [PMID: 18849292 PMCID: PMC2581659 DOI: 10.1098/rstb.2008.0091] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While the neuropathology of kuru is well defined, there are few data concerning the distribution of disease-related prion protein in peripheral tissues. Here we report the investigation of brain and peripheral tissues from a kuru patient who died in 2003. Neuropathological findings were compared with those seen in classical (sporadic and iatrogenic) Creutzfeldt–Jakob disease (CJD) and variant CJD (vCJD). The neuropathological findings of the kuru patient showed all the stereotypical changes that define kuru, with the occurrence of prominent PrP plaques throughout the brain. Lymphoreticular tissue showed no evidence of prion colonization, suggesting that the peripheral pathogenesis of kuru is similar to that seen in classical CJD rather than vCJD. These findings now strongly suggest that the characteristic peripheral pathogenesis of vCJD is determined by prion strain type alone rather than route of infection.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu Y, Lee PJ, Pan J, Lardin HA. The relationship between ventricular repolarization duration and RR interval in normal subjects and patients with myocardial infarction. Cardiology 2008; 111:209-18. [PMID: 18434728 DOI: 10.1159/000121607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 12/31/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVES When either ventricular myocardium becomes ischemic or autonomic nervous system activity changes with age, the relationship between ventricular repolarization duration and RR interval will change as well. We studied the relationship between ventricular repolarization duration and RR interval among normal subjects in different age groups and between patients with myocardial infarction (MI) and age-matched healthy subjects. METHODS Ventricular repolarization duration variability (RDV) spectra were separated into RR-dependent and RR-independent components. We compared spectral measures among normal subjects in different age groups and between patients with MI and age-matched healthy subjects. RESULTS The RR-dependent component of RDV spectra, which is correlated with autonomic nervous system activity, significantly decreased with age for healthy subjects. The RR-independent component significantly increased in MI patients compared to age-matched healthy subjects. CONCLUSIONS We demonstrated the increase in RDV upon decreasing age and in the presence of MI. Our results support the idea that the RR-dependent part corresponds to the physiology-related part of the RDV spectra and the RR-independent part corresponds to the pathology-related part of the RDV spectra. Our study suggests that these spectral measures are likely to be helpful in the evaluation of a patient with MI and merit further investigation.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Medicine and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Ill., USA
| | | | | | | |
Collapse
|