1
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
De Bari B, Kondepudi DK, Dixon JA. Foraging Dynamics and Entropy Production in a Simulated Proto-Cell. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1793. [PMID: 36554198 PMCID: PMC9778031 DOI: 10.3390/e24121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
All organisms depend on a supply of energetic resources to power behavior and the irreversible entropy-producing processes that sustain them. Dissipative structure theory has often been a source of inspiration for better understanding the thermodynamics of biology, yet real organisms are inordinately more complex than most laboratory systems. Here we report on a simulated chemical dissipative structure that operates as a proto cell. The simulated swimmer moves through a 1D environment collecting resources that drive a nonlinear reaction network interior to the swimmer. The model minimally represents properties of a simple organism including rudimentary foraging and chemotaxis and an analog of a metabolism in the nonlinear reaction network. We evaluated how dynamical stability of the foraging dynamics (i.e., swimming and chemotaxis) relates to the rate of entropy production. Results suggested a relationship between dynamical steady states and entropy production that was tuned by the relative coordination of foraging and metabolic processes. Results include evidence in support of and contradicting one formulation of a maximum entropy production principle. We discuss the status of this principle and its relevance to biology.
Collapse
Affiliation(s)
- Benjamin De Bari
- Department of Psychology, Lehigh University, Bethlehem, PA 18015, USA
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
| | - Dilip K. Kondepudi
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - James A. Dixon
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Functional Interdependence in Coupled Dissipative Structures: Physical Foundations of Biological Coordination. ENTROPY 2021; 23:e23050614. [PMID: 34063356 PMCID: PMC8156455 DOI: 10.3390/e23050614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Coordination within and between organisms is one of the most complex abilities of living systems, requiring the concerted regulation of many physiological constituents, and this complexity can be particularly difficult to explain by appealing to physics. A valuable framework for understanding biological coordination is the coordinative structure, a self-organized assembly of physiological elements that collectively performs a specific function. Coordinative structures are characterized by three properties: (1) multiple coupled components, (2) soft-assembly, and (3) functional organization. Coordinative structures have been hypothesized to be specific instantiations of dissipative structures, non-equilibrium, self-organized, physical systems exhibiting complex pattern formation in structure and behaviors. We pursued this hypothesis by testing for these three properties of coordinative structures in an electrically-driven dissipative structure. Our system demonstrates dynamic reorganization in response to functional perturbation, a behavior of coordinative structures called reciprocal compensation. Reciprocal compensation is corroborated by a dynamical systems model of the underlying physics. This coordinated activity of the system appears to derive from the system’s intrinsic end-directed behavior to maximize the rate of entropy production. The paper includes three primary components: (1) empirical data on emergent coordinated phenomena in a physical system, (2) computational simulations of this physical system, and (3) theoretical evaluation of the empirical and simulated results in the context of physics and the life sciences. This study reveals similarities between an electrically-driven dissipative structure that exhibits end-directed behavior and the goal-oriented behaviors of more complex living systems.
Collapse
|
4
|
Skene KR. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Yen JDL, Paganin DM, Thomson JR, Mac Nally R. Thermodynamic extremization principles and their relevance to ecology. AUSTRAL ECOL 2014. [DOI: 10.1111/aec.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian D. L. Yen
- School of Biological Sciences; Monash University; Melbourne Vic. 3800 Australia
- School of Physics; Monash University; Melbourne Victoria Australia
| | - David M. Paganin
- School of Physics; Monash University; Melbourne Victoria Australia
| | - James R. Thomson
- School of Biological Sciences; Monash University; Melbourne Vic. 3800 Australia
- Institute for Applied Ecology; The University of Canberra; Canberra, ACT Australia
| | - Ralph Mac Nally
- Institute for Applied Ecology; The University of Canberra; Canberra, ACT Australia
| |
Collapse
|
6
|
Schwalb W, Ng TW, Lye JKK, Liew OW, Cheong BHP. Surface tension drawing of liquid from microplate capillary wells. J Colloid Interface Sci 2012; 365:314-9. [DOI: 10.1016/j.jcis.2011.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 11/28/2022]
|
7
|
Volk T, Pauluis O. It is not the entropy you produce, rather, how you produce it. Philos Trans R Soc Lond B Biol Sci 2010; 365:1317-22. [PMID: 20368249 DOI: 10.1098/rstb.2010.0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The principle of maximum entropy production (MEP) seeks to better understand a large variety of the Earth's environmental and ecological systems by postulating that processes far from thermodynamic equilibrium will 'adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate'. Our aim in this 'outside view', invited by Axel Kleidon, is to focus on what we think is an outstanding challenge for MEP and for irreversible thermodynamics in general: making specific predictions about the relative contribution of individual processes to entropy production. Using studies that compared entropy production in the atmosphere of a dry versus humid Earth, we show that two systems might have the same entropy production rate but very different internal dynamics of dissipation. Using the results of several of the papers in this special issue and a thought experiment, we show that components of life-containing systems can evolve to either lower or raise the entropy production rate. Our analysis makes explicit fundamental questions for MEP that should be brought into focus: can MEP predict not just the overall state of entropy production of a system but also the details of the sub-systems of dissipaters within the system? Which fluxes of the system are those that are most likely to be maximized? How it is possible for MEP theory to be so domain-neutral that it can claim to apply equally to both purely physical-chemical systems and also systems governed by the 'laws' of biological evolution? We conclude that the principle of MEP needs to take on the issue of exactly how entropy is produced.
Collapse
Affiliation(s)
- Tyler Volk
- Department of Biology and Environmental Studies Program, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10002, USA.
| | | |
Collapse
|
8
|
Kleidon A, Malhi Y, Cox PM. Maximum entropy production in environmental and ecological systems. Philos Trans R Soc Lond B Biol Sci 2010; 365:1297-302. [PMID: 20368247 DOI: 10.1098/rstb.2010.0018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.
Collapse
Affiliation(s)
- Axel Kleidon
- Max-Planck-Institut für Biogeochemie, Hans-Knöll-Strasse 10, 07745 Jena, Germany.
| | | | | |
Collapse
|