1
|
Okabe T. Evolutionary origins of Fibonacci phyllotaxis in land plants. Heliyon 2024; 10:e27812. [PMID: 38515661 PMCID: PMC10955312 DOI: 10.1016/j.heliyon.2024.e27812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Fibonacci phyllotaxis is commonly seen in all major groups of land plants. While a precise correlation is found between the internal pattern of the primary vascular system and the external pattern of appendages on the stem surface, it remains a big question how this regularity of Fibonacci phyllotaxis came into being in the course of evolution. Here I address this problem with a model describing phylogenetic and ontogenetic changes in vascular phyllotaxis based on two hypotheses. The first is that the Fibonacci pattern of vascular connection is uniquely determined by the primary arrangement of incipient primordia, the sources of the primary signal system in vascular tissue differentiation. The second is that the surface-area-to-volume ratio of primary vascular tissues serves as a measure of fitness in evolution. The model explains the empirical rule on the manner in which vascular connection is reconfigured during ontogeny, especially during juvenile development. Fossil and phylogenetic evidence suggests that Fibonacci phyllotaxis appeared shortly after the innovation of indefinite lateral organ initiation in a regular sequence.
Collapse
Affiliation(s)
- Takuya Okabe
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432-8561, Japan
| |
Collapse
|
2
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Egeland J. Evolutionary Psychology and Normal Science: in Search of a Unifying Research Program. Integr Psychol Behav Sci 2023; 57:390-411. [PMID: 36474009 PMCID: PMC10113342 DOI: 10.1007/s12124-022-09736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Why are there so many controversies in evolutionary psychology? Using a couple of concepts from philosophy of science, this paper argues that evolutionary psychology has not reached the stage of mature, normal science, since it does not currently have a unifying research program that guides individual scientists working in the discipline. The argument goes against claims made by certain proponents and opponents of evolutionary psychology, and it is supported by discussion of several examples. The paper notes that just because evolutionary psychology has not reached the stage of normal science, the discipline is nevertheless a source of many progressive theoretical developments and interesting empirical discoveries.
Collapse
|
4
|
Goodwyn E. Phenotypic plasticity and archetype: a response to common objections to the biological theory of archetype and instinct. THE JOURNAL OF ANALYTICAL PSYCHOLOGY 2023; 68:109-132. [PMID: 36694278 DOI: 10.1111/1468-5922.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/26/2023]
Abstract
Since Jung's death in 1961, scholars have attempted to integrate growing biological science data into Jungian concepts such as the collective unconscious, instincts and the archetypes. This enterprise has been challenging due to persistent false dichotomies of gene and environment occasionally arising. Recent works by Roesler (2022a, 2022b) for example, have raised objections to the biological theory of archetypes, but the objections are plagued by such dichotomies. The concept of phenotypic plasticity, however, helps to both avoid this problem as well as bridge the gap between competing theories into a more integrated model with solid biological foundations.
Collapse
|
5
|
Hervé E, Mento G, Desnous B, François C. Challenges and new perspectives of developmental cognitive EEG studies. Neuroimage 2022; 260:119508. [PMID: 35882267 DOI: 10.1016/j.neuroimage.2022.119508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022] Open
Abstract
Despite shared procedures with adults, electroencephalography (EEG) in early development presents many specificities that need to be considered for good quality data collection. In this paper, we provide an overview of the most representative early cognitive developmental EEG studies focusing on the specificities of this neuroimaging technique in young participants, such as attrition and artifacts. We also summarize the most representative results in developmental EEG research obtained in the time and time-frequency domains and use more advanced signal processing methods. Finally, we briefly introduce three recent standardized pipelines that will help promote replicability and comparability across experiments and ages. While this paper does not claim to be exhaustive, it aims to give a sufficiently large overview of the challenges and solutions available to conduct robust cognitive developmental EEG studies.
Collapse
Affiliation(s)
- Estelle Hervé
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padua Neuroscience Center (PNC), University of Padova, Padova 35131, Italy
| | - Béatrice Desnous
- APHM, Reference Center for Rare Epilepsies, Timone Children Hospital, Aix-Marseille University, Marseille 13005, France; Inserm, INS, Aix-Marseille University, Marseille 13005, France
| | - Clément François
- CNRS, LPL, Aix-Marseille University, 5 Avenue Pasteur, Aix-en-Provence 13100, France.
| |
Collapse
|
6
|
Goetz SMM, Weisfeld CC, Weisfeld GE. The Road Not Taken: What Developmental Psychology Might Learn From Darwin's Insights Concerning Sexual Selection. Front Psychol 2022; 13:900799. [PMID: 35677140 PMCID: PMC9169979 DOI: 10.3389/fpsyg.2022.900799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental Psychology is the branch of psychology that studies, not only human behavior, but how and why human behavior changes over time. This essay seeks to review to what extent Developmental Psychology has failed to perceive human behavior through the lens of evolutionary theory in general, and in particular sexual selection as first described by Darwin and later elaborated on by many, including Robert Trivers and Geoffrey Miller; the essay asserts that this failure has resulted in many wrong turns and missed opportunities. In some cases, major developmental theorists (e.g., Freud, Erikson) were bedeviled by sex-based differences which they saw but could not explain and which compromised the parsimony of their stage theories. In the case of stage theories of moral development, some major theorists (e.g., Piaget, Kohlberg) were able to offer simpler explanations of moral development only by limiting their studies to male subjects. And, while Developmental Psychology textbooks thoroughly describe sex differences in the timing of morphological changes in puberty, writers seldom discuss why the timing is different in the two sexes, universally, and functionally. On the other hand, several domains of developmental focus, including play, mate choice, parenting, and spatial cognition, have seen successful research efforts that utilized sexually selected predispositions as foundational assumptions. The essay concludes with a discussion of how a more evolutionary and functional view of human behavior might move the field of Developmental Psychology to an even more robust and accurate understanding of how humans change over the course of a lifetime.
Collapse
Affiliation(s)
| | | | - Glenn E Weisfeld
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
7
|
Kavaliers M, Ossenkopp KP, Tyson CD, Bishnoi IR, Choleris E. Social factors and the neurobiology of pathogen avoidance. Biol Lett 2022; 18:20210371. [PMID: 35193366 PMCID: PMC8864371 DOI: 10.1098/rsbl.2021.0371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Cashmeira-Dove Tyson
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Indra R. Bishnoi
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
8
|
Making sense of strengths and weaknesses observed in adolescent lab rodents. Curr Opin Psychol 2022; 45:101297. [DOI: 10.1016/j.copsyc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
9
|
Nine Levels of Explanation : A Proposed Expansion of Tinbergen's Four-Level Framework for Understanding the Causes of Behavior. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2021; 32:748-793. [PMID: 34739657 DOI: 10.1007/s12110-021-09414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/16/2023]
Abstract
Tinbergen's classic "On Aims and Methods of Ethology" (Zeitschrift für Tierpsychologie, 20, 1963) proposed four levels of explanation of behavior, which he thought would soon apply to humans. This paper discusses the need for multilevel explanation; Huxley and Mayr's prior models, and others that followed; Tinbergen's differences with Lorenz on "the innate"; and Mayr's ultimate/proximate distinction. It synthesizes these approaches with nine levels of explanation in three categories: phylogeny, natural selection, and genomics (ultimate causes); maturation, sensitive period effects, and routine environmental effects (intermediate causes); and hormonal/metabolic processes, neural circuitry, and eliciting stimuli (proximate causes), as a respectful extension of Tinbergen's levels. The proposed classification supports and builds on Tinbergen's multilevel model and Mayr's ultimate/proximate continuum, adding intermediate causes in accord with Tinbergen's emphasis on ontogeny. It requires no modification of Standard Evolutionary Theory or The Modern Synthesis, but shows that much that critics claim was missing was in fact part of Neo-Darwinian theory (so named by J. Mark Baldwin in The American Naturalist in 1896) all along, notably reciprocal causation in ontogeny, niche construction, cultural evolution, and multilevel selection. Updates of classical examples in ethology are offered at each of the nine levels, including the neuroethological and genomic findings Tinbergen foresaw. Finally, human examples are supplied at each level, fulfilling his hope of human applications as part of the biology of behavior. This broad ethological framework empowers us to explain human behavior-eventually completely-and vindicates the idea of human nature, and of humans as a part of nature.
Collapse
|
10
|
Fischer EK, Hauber ME, Bell AM. Back to the basics? Transcriptomics offers integrative insights into the role of space, time and the environment for gene expression and behaviour. Biol Lett 2021; 17:20210293. [PMID: 34520681 DOI: 10.1098/rsbl.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fuelled by the ongoing genomic revolution, broadscale RNA expression surveys are fast replacing studies targeting one or a few genes to understand the molecular basis of behaviour. Yet, the timescale of RNA-sequencing experiments and the dynamics of neural gene activation are insufficient to drive real-time switches between behavioural states. Moreover, the spatial, functional and transcriptional complexity of the brain (the most commonly targeted tissue in studies of behaviour) further complicates inference. We argue that a Central Dogma-like 'back-to-basics' assumption that gene expression changes cause behaviour leaves some of the most important aspects of gene-behaviour relationships unexplored, including the roles of environmental influences, timing and feedback from behaviour-and the environmental shifts it causes-to neural gene expression. No perfect experimental solutions exist but we advocate that explicit consideration, exploration and discussion of these factors will pave the way toward a richer understanding of the complicated relationships between genes, environments, brain gene expression and behaviour over developmental and evolutionary timescales.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Alison M Bell
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
11
|
Austin VI, Dalziell AH, Langmore NE, Welbergen JA. Avian vocalisations: the female perspective. Biol Rev Camb Philos Soc 2021; 96:1484-1503. [PMID: 33797176 DOI: 10.1111/brv.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Research on avian vocalisations has traditionally focused on male song produced by oscine passerines. However, accumulating evidence indicates that complex vocalisations can readily evolve outside the traditional contexts of mate attraction and territory defence by male birds, and yet the previous bias towards male song has shaped - and continues to shape - our understanding of avian communication as a whole. Accordingly, in this review we seek to address this imbalance by synthesising studies on female vocalisations from across signalling contexts throughout the Aves, and discuss the implications of recent empirical advances for our understanding of vocalisations in both sexes. This review reveals great structural and functional diversity among female vocalisations and highlights the important roles that vocalisations can play in mediating female-specific behaviours. However, fundamental gaps remain. While there are now several case studies that identify the function of female vocalisations, few quantify the associated fitness benefits. Additionally, very little is known about the role of vocal learning in the development of female vocalisations. Thus, there remains a pressing need to examine the function and development of all forms of vocalisations in female birds. In the light of what we now know about the functions and mechanisms of female vocalisations, we suggest that conventional male-biased definitions of songs and calls are inadequate for furthering our understanding of avian vocal communication more generally. Therefore, we propose two simple alternatives, both emancipated from the sex of the singer. The first distinguishes song from calls functionally as a sexually selected vocal signal, whilst the second distinguishes them mechanistically in terms of their underlying neurological processes. It is clear that more investigations are needed into the ultimate and proximate causes of female vocalisations; however, these are essential if we are to develop a holistic epistemology of avian vocal communication in both sexes, across ecological contexts and taxonomic divides.
Collapse
Affiliation(s)
- Victoria I Austin
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anastasia H Dalziell
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.,Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, U.S.A
| | - Naomi E Langmore
- Research School of Biology, The Australian National University, 46 Sullivan's Creek Road, Acton, Canberra, ACT, 2601, Australia
| | - Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Ground Floor, Building R2, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
12
|
Roth TS, Samara I, Kret ME. Ultimate and proximate factors underlying sexual overperception bias: A reply to Lee et al. (2020). EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Konsman JP. So Many Faces, Phases, and Facets, Sickness Behavior Beyond Disciplines. Front Psychiatry 2021; 12:630331. [PMID: 33716828 PMCID: PMC7947683 DOI: 10.3389/fpsyt.2021.630331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
Animals, including human beings, modify their behavior when they fall sick. Interestingly, sociology, biology, and psychology have at different times in their history developed constructs of illness or sickness behavior. The aims of the present paper are to consider sickness behavior in animals and humans and to evaluate to what extent the notions of sickness behavior would allow for interdisciplinary research. After distinguishing disease, illness, and sickness, the case will be made that illness behavior and sickness behavior can be considered heuristically as synonyms given the existence of some fluidity between the notion of illness and sickness. Based on this, different faces, phases, and facets of sickness behavior will be presented before addressing the question of how integration of constructs of sickness behaviors would be possible across biology, medicine, psychology, and sociology. It is concluded that interdisciplinary research on sickness behavior between biology, psychology, and sociology is possible and called for with regard to constructs, methods, and explanations, while keeping in mind differences in perspectives, for example between acute and chronic sickness behavior.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- Aquitaine Institute for Integrative and Cognitive Neuroscience (INCIA) UMR CNRS 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
François C, Garcia-Alix A, Bosch L, Rodriguez-Fornells A. Signatures of brain plasticity supporting language recovery after perinatal arterial ischemic stroke. BRAIN AND LANGUAGE 2021; 212:104880. [PMID: 33220646 DOI: 10.1016/j.bandl.2020.104880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Brain imaging methods such as functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) have already been used to decipher the functional and structural brain changes occurring during normal language development. However, little is known about the differentiation of the language network after an early lesion. While in adults, stroke over the left hemisphere generally induces post-stroke aphasia, it is not always the case when a stroke occurs in the perinatal period, thus revealing a remarkable plastic power of the language network during early development. In particular, the role of perilesional tissues, as opposed to undamaged brain areas in the functional recovery of language functions after an early insult, remains unclear. In this review article, we provide an overview of the extant literature using functional and structural neuroimaging data revealing the signatures of brain plasticity underlying near-normal language development.
Collapse
Affiliation(s)
| | - Alfredo Garcia-Alix
- Service of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; NeNe Foundation, Madrid, Spain
| | - Laura Bosch
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
15
|
Goodwyn E. Archetypes and the 'Impoverished Genome' argument: updates from evolutionary genetics. THE JOURNAL OF ANALYTICAL PSYCHOLOGY 2020; 65:911-931. [PMID: 33202047 DOI: 10.1111/1468-5922.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Throughout his career, Jung felt the psyche had 'ancestral layers' that contained elements of an individual's species history, and clinical experience has shown that this idea can be an aid to psychological healing and emotional well-being. Thus, some later thinkers have attempted to link such theoretical constructs to the genome, as Jung had little knowledge of genetics in his day. But in the early 2000s, genome studies suggested that the genome might contain too little content to be capable of encoding symbolic information. This opinion gave rise to an oft-repeated 'impoverished genome' argument, i.e. that the genome could not provide a significant contribution to the collective unconscious, prompting theorists to propose other sources for it, or to argue that it doesn't exist. Today, however, developments in evolutionary neurogenetics calls the impoverished genome argument into question for a number of independent reasons. These developments re-open the idea that the genome may be worth reconsidering as the biological substrate for the collective unconscious.
Collapse
|
16
|
Sakata JT, Woolley SC. Scaling the Levels of Birdsong Analysis. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Yan J, Monaco H, Xavier JB. The Ultimate Guide to Bacterial Swarming: An Experimental Model to Study the Evolution of Cooperative Behavior. Annu Rev Microbiol 2019; 73:293-312. [PMID: 31180806 PMCID: PMC7428860 DOI: 10.1146/annurev-micro-020518-120033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cooperation has fascinated biologists since Darwin. How did cooperative behaviors evolve despite the fitness cost to the cooperator? Bacteria have cooperative behaviors that make excellent models to take on this age-old problem from both proximate (molecular) and ultimate (evolutionary) angles. We delve into Pseudomonas aeruginosa swarming, a phenomenon where billions of bacteria move cooperatively across distances of centimeters in a matter of a few hours. Experiments with swarming have unveiled a strategy called metabolic prudence that stabilizes cooperation, have showed the importance of spatial structure, and have revealed a regulatory network that integrates environmental stimuli and direct cooperative behavior, similar to a machine learning algorithm. The study of swarming elucidates more than proximate mechanisms: It exposes ultimate mechanisms valid to all scales, from cells in cancerous tumors to animals in large communities.
Collapse
Affiliation(s)
- Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Hilary Monaco
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
18
|
Seefeldt L, Ebert D. Temperature- versus precipitation-limitation shape local temperature tolerance in a Holarctic freshwater crustacean. Proc Biol Sci 2019; 286:20190929. [PMID: 31337313 PMCID: PMC6661336 DOI: 10.1098/rspb.2019.0929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Species with wide geographical distributions are often adapted locally to the prevailing temperatures. To understand how they respond to ongoing climatic change, we must appreciate the interplay between temperature, seasonality and the organism's life cycle. The temperature experienced by many organisms results from an often-overlooked combination of climate and phenology. Summer-active (high latitude) populations are expected to adapt to local summer temperatures, but this is not expected for populations that outlive the summer in their dormant stage (low latitude, precipitation-limited). We recorded reproduction and survival in genotypes from 123 Holarctic populations of Daphnia magna during a multi-generation thermal ramp experiment. Genotypes from summer-active populations showed a positive relationship between heat tolerance and local summer temperature, whereas winter-active populations did not. These findings are consistent with the hypothesis that D. magna adapts to the local temperatures the animals experience during their planktonic phase. We conclude that predicting local temperature adaptation, in particular in the light of climate change, needs to consider the phenology of geographically wide-ranging species.
Collapse
Affiliation(s)
- Leonie Seefeldt
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
19
|
Thorogood R, Spottiswoode CN, Portugal SJ, Gloag R. The coevolutionary biology of brood parasitism: a call for integration. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180190. [PMID: 30967086 PMCID: PMC6388032 DOI: 10.1098/rstb.2018.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/12/2022] Open
Abstract
Obligate brood-parasitic cheats have fascinated natural historians since ancient times. Passing on the costs of parental care to others occurs widely in birds, insects and fish, and often exerts selection pressure on hosts that in turn evolve defences. Brood parasites have therefore provided an illuminating system for researching coevolution. Nevertheless, much remains unknown about how ecology and evolutionary history constrain or facilitate brood parasitism, or the mechanisms that shape or respond to selection. In this special issue, we bring together examples from across the animal kingdom to illustrate the diverse ways in which recent research is addressing these gaps. This special issue also considers how research on brood parasitism may benefit from, and in turn inform, related fields such as social evolution and immunity. Here, we argue that progress in our understanding of coevolution would benefit from the increased integration of ideas across taxonomic boundaries and across Tinbergen's Four Questions: mechanism, ontogeny, function and phylogeny of brood parasitism. We also encourage renewed vigour in uncovering the natural history of the majority of the world's brood parasites that remain little-known. Indeed, it seems very likely that some of nature's brood parasites remain entirely unknown, because otherwise we are left with a puzzle: if parental care is so costly, why is brood parasitism not more common? This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Rose Thorogood
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Research Program in Organismal and Evolutionary Biology, Faculty of Environmental and Biological Sciences, University of Helsinki, Helsinki 00014, Finland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Steven J. Portugal
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ros Gloag
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
20
|
Abstract
Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Biology, Pennsylvania State University, State College, PA, USA.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
|
22
|
Young NM. Integrating “Evo” and “Devo”: The Limb as Model Structure. Integr Comp Biol 2017; 57:1293-1302. [DOI: 10.1093/icb/icx115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
Dantzer B, Rubenstein DR. Introduction to Symposium: The Developmental and Proximate Mechanisms Causing Individual Variation in Cooperative Behavior. Integr Comp Biol 2017; 57:560-565. [PMID: 28957528 DOI: 10.1093/icb/icx093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nearly all animals interact with members of their own species at some point during their lives. These behavioral interactions range from courtship, mating, and parental care to the complex cooperative behavior among related or unrelated individuals in group-living species. A number of theoretical models have attempted to explain how cooperation can evolve through natural selection. Although tremendously influential in animal behavior research, these traditional models have largely ignored individual variation in cooperative behavior and its underlying developmental and proximate mechanisms. However, a set of emerging models suggest that the evolution of cooperation can be heavily influenced by the degree of individual variation in cooperative behavior, as well as the complexity of the underlying mechanisms. Yet, while theoreticians argue the importance of studying individual variation in cooperation and the mechanisms underlying it, empiricists have not focused upon these aspects. The main objectives of our symposium at the 2017 meeting of the Society for Integrative and Comparative Biology is to establish new research avenues to study variation in cooperative behavior using both proximate and ultimate explanations and to produce a road map to study the developmental and proximate mechanisms in generating individual variation in cooperative behavior. This symposium brought together empiricists and theoreticians investigating cooperative behavior in diverse taxa and across multiple levels of analysis. Here we briefly describe the rationale for this symposium and why we thought it was needed as well as provide a brief overview of the contributions.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA.,Center for Integrative Animal Behavior, Columbia University, New York, NY 10027, USA
| |
Collapse
|
24
|
Deyrup ST, Risteen RG, Tonyai KK, Farrar MA, D'Antonio BE, Ahmed ZB, Christofel BT, Howells NR, Smedley SR. Escape into Winter: Does a Phenological Shift byEllychnia corrusca(Winter Firefly) Shield it from a Specialist Predator (Photuris)? Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.s717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Stephen T. Deyrup
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211
| | | | | | | | | | - Zenab B. Ahmed
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211
| | - Brian T. Christofel
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211
| | - Nicole R. Howells
- Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12211
| | | |
Collapse
|
25
|
Hofmann HA, Renn SCP, Rubenstein DR. Introduction to Symposium: New Frontiers in the Integrative Study of Animal Behavior: Nothing in Neuroscience Makes Sense Except in the Light of Behavior. Integr Comp Biol 2016; 56:1192-1196. [PMID: 27940612 DOI: 10.1093/icb/icw127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hans A Hofmann
- *Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA .,Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX 78712, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Center for Integrative Animal Behavior, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
26
|
Torday JS. Homeostasis as the Mechanism of Evolution. BIOLOGY 2015; 4:573-90. [PMID: 26389962 PMCID: PMC4588151 DOI: 10.3390/biology4030573] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
Homeostasis is conventionally thought of merely as a synchronic (same time) servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time) mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.
Collapse
Affiliation(s)
- John S Torday
- Harbor-UCLA Medical Center, 1224 W. Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
27
|
Hofmann HA, Beery AK, Blumstein DT, Couzin ID, Earley RL, Hayes LD, Hurd PL, Lacey EA, Phelps SM, Solomon NG, Taborsky M, Young LJ, Rubenstein DR. An evolutionary framework for studying mechanisms of social behavior. Trends Ecol Evol 2014; 29:581-9. [DOI: 10.1016/j.tree.2014.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
28
|
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology; Institute of Ecology and Evolution; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
29
|
Abstract
Natural selection defined by differential survival and reproduction of individuals in populations is influenced by genetic, developmental, and environmental factors operating at every age and stage in human life history: generation of gametes, conception, birth, maturation, reproduction, senescence, and death. Biological systems are built upon a hierarchical organization nesting subcellular organelles, cells, tissues, and organs within individuals, individuals within families, and families within populations, and the latter among other populations. Natural selection often acts simultaneously at more than one level of biological organization and on specific traits, which we define as multilevel selection. Under this model, the individual is a fundamental unit of biological organization and also of selection, imbedded in a larger evolutionary context, just as it is a unit of medical intervention imbedded in larger biological, cultural, and environmental contexts. Here, we view human health and life span as necessary consequences of natural selection, operating at all levels and phases of biological hierarchy in human life history as well as in sociological and environmental milieu. An understanding of the spectrum of opportunities for natural selection will help us develop novel approaches to improving healthy life span through specific and global interventions that simultaneously focus on multiple levels of biological organization. Indeed, many opportunities exist to apply multilevel selection models employed in evolutionary biology and biodemography to improving human health at all hierarchical levels. Multilevel selection perspective provides a rational theoretical foundation for a synthesis of medicine and evolution that could lead to discovering effective predictive, preventive, palliative, potentially curative, and individualized approaches in medicine and in global health programs.
Collapse
|
30
|
Nemeth Z, Bonier F, MacDougall-Shackleton SA. Coping with Uncertainty: Integrating Physiology, Behavior, and Evolutionary Ecology in a Changing World. Integr Comp Biol 2013; 53:960-4. [DOI: 10.1093/icb/ict089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
32
|
Laland KN, Odling-Smee J, Hoppitt W, Uller T. More on how and why: a response to commentaries. BIOLOGY & PHILOSOPHY 2013; 28:793-810. [PMID: 23970808 DOI: 10.1007/s10539-012-9335-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 05/28/2023]
Abstract
We are grateful to the commentators for taking the time to respond to our article. Too many interesting and important points have been raised for us to tackle them all in this response, and so in the below we have sought to draw out the major themes. These include problems with both the term 'ultimate causation' and the proximate-ultimate causation dichotomy more generally, clarification of the meaning of reciprocal causation, discussion of issues related to the nature of development and phenotypic plasticity and their roles in evolution, and consideration of the need for an extended evolutionary synthesis.
Collapse
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St Andrews, St Andrews, UK
| | | | | | | |
Collapse
|
33
|
Laland KN, Odling-Smee J, Hoppitt W, Uller T. More on how and why: a response to commentaries. BIOLOGY & PHILOSOPHY 2013; 28:793-810. [PMID: 23970808 PMCID: PMC3745615 DOI: 10.1007/s10539-013-9380-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
We are grateful to the commentators for taking the time to respond to our article. Too many interesting and important points have been raised for us to tackle them all in this response, and so in the below we have sought to draw out the major themes. These include problems with both the term 'ultimate causation' and the proximate-ultimate causation dichotomy more generally, clarification of the meaning of reciprocal causation, discussion of issues related to the nature of development and phenotypic plasticity and their roles in evolution, and consideration of the need for an extended evolutionary synthesis.
Collapse
Affiliation(s)
| | | | - William Hoppitt
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Tobias Uller
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
The suprachiasmatic nucleus and the circadian timing system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:1-28. [PMID: 23899592 DOI: 10.1016/b978-0-12-396971-2.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The circadian timing system (CTS) in mammals may be defined as a network of interconnected diencephalic structures that regulate the timing of physiological processes and behavioral state. The central feature of the CTS is the suprachiasmatic nucleus (SCN) of the hypothalamus, a self-sustaining circadian oscillator entrained by visual afferents, input from other brain and peripheral oscillators. The SCN was first noted as a distinct component of the hypothalamus during the late nineteenth century and recognized soon after as a uniform feature of the mammalian and lower vertebrate brain. But, as was true for so many brain components identified in that era, its function was unknown and remained so for nearly a century. In the latter half of the twentieth century, numerous tools for studying the brain were developed including neuroanatomical tracing methods, electrophysiological methods including long-term recording in vivo and in vitro, precise methods for producing localized lesions in the brain, and molecular neurobiology. Application of these methods provided a body of data strongly supporting the view that the SCN is a circadian pacemaker in the mammalian brain. This chapter presents an analysis of the functional organization of the SCN as a component of a neural network, the CTS. This network functions as a coordinator of hypothalamic regulatory systems imposing a temporal organization of physiological processes and behavioral state to promote environmental adaptation.
Collapse
|
35
|
Emmert-Streib F, Tripathi S, de Matos Simoes R. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biol Direct 2012; 7:44. [PMID: 23227854 PMCID: PMC3769148 DOI: 10.1186/1745-6150-7-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022] Open
Abstract
High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods.
Collapse
Affiliation(s)
- Frank Emmert-Streib
- Computational Biology and Machine Learning Laboratory, Queen's University Belfast, Belfast, UK.
| | | | | |
Collapse
|
36
|
Hall BK. Homology, homoplasy, novelty, and behavior. Dev Psychobiol 2012; 55:4-12. [PMID: 22711423 DOI: 10.1002/dev.21039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/28/2012] [Indexed: 12/26/2022]
Abstract
Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous).
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
37
|
Sakata JT, Vehrencamp SL. Integrating perspectives on vocal performance and consistency. ACTA ACUST UNITED AC 2012; 215:201-9. [PMID: 22189763 DOI: 10.1242/jeb.056911] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection.
Collapse
Affiliation(s)
- Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1.
| | | |
Collapse
|
38
|
Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T. Cause and Effect in Biology Revisited: Is Mayr's Proximate-Ultimate Dichotomy Still Useful? Science 2011; 334:1512-6. [PMID: 22174243 DOI: 10.1126/science.1210879] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St. Andrews, St. Andrews KY16 9TS, UK.
| | | | | | | | | |
Collapse
|
39
|
Bertossa RC. Morphology and behaviour: functional links in development and evolution. Philos Trans R Soc Lond B Biol Sci 2011; 366:2056-68. [PMID: 21690124 PMCID: PMC3130372 DOI: 10.1098/rstb.2011.0035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Development and evolution of animal behaviour and morphology are frequently addressed independently, as reflected in the dichotomy of disciplines dedicated to their study distinguishing object of study (morphology versus behaviour) and perspective (ultimate versus proximate). Although traits are known to develop and evolve semi-independently, they are matched together in development and evolution to produce a unique functional phenotype. Here I highlight similarities shared by both traits, such as the decisive role played by the environment for their ontogeny. Considering the widespread developmental and functional entanglement between both traits, many cases of adaptive evolution are better understood when proximate and ultimate explanations are integrated. A field integrating these perspectives is evolutionary developmental biology (evo-devo), which studies the developmental basis of phenotypic diversity. Ultimate aspects in evo-devo studies--which have mostly focused on morphological traits--could become more apparent when behaviour, 'the integrator of form and function', is integrated into the same framework of analysis. Integrating a trait such as behaviour at a different level in the biological hierarchy will help to better understand not only how behavioural diversity is produced, but also how levels are connected to produce functional phenotypes and how these evolve. A possible framework to accommodate and compare form and function at different levels of the biological hierarchy is outlined. At the end, some methodological issues are discussed.
Collapse
Affiliation(s)
- Rinaldo C Bertossa
- Centre for Behaviour and Neurosciences & Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 9700 Groningen, The Netherlands.
| |
Collapse
|