1
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2025; 93:62-82. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
3
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
4
|
Dhillon P, Mulholland KA, Hu H, Park J, Sheng X, Abedini A, Liu H, Vassalotti A, Wu J, Susztak K. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat Commun 2023; 14:559. [PMID: 36732547 PMCID: PMC9895454 DOI: 10.1038/s41467-023-36212-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is a common feature of all forms of chronic kidney disease; however, the underlying mechanism remains poorly understood. Evolutionarily inherited endogenous retroviruses (ERVs) have the potential to trigger an immune reaction. Comprehensive RNA-sequencing of control and diseased kidneys from human and mouse disease models indicated higher expression of transposable elements (TEs) and ERVs in diseased kidneys. Loss of cytosine methylation causing epigenetic derepression likely contributes to an increase in ERV levels. Genetic deletion/pharmacological inhibition of DNA methyltransferase 1 (DNMT1) induces ERV expression. In cultured kidney tubule cells, ERVs elicit the activation of cytosolic nucleotide sensors such as RIG-I, MDA5, and STING. ERVs expressions in kidney tubules trigger RIG-I/STING, and cytokine expression, and correlate with the presence of immune cells. Genetic deletion of RIG-I or STING or treatment with reverse transcriptase inhibitor ameliorates kidney fibroinflammation. Our data indicate an important role of epigenetic derepression-induced ERV activation triggering renal fibroinflammation.
Collapse
Affiliation(s)
- Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Kelly Ann Mulholland
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Allison Vassalotti
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
| |
Collapse
|
5
|
Evolutionary Analysis of Placental Orthologues Reveals Two Ancient DNA Virus Integrations. J Virol 2022; 96:e0093322. [DOI: 10.1128/jvi.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of vertebrates preserve a large diversity of endogenous viral elements (remnants of ancient viruses that accumulate in host genomes over evolutionary time). Although retroviruses account for the vast majority of these elements, diverse DNA viruses have also been found and novel lineages are being described.
Collapse
|
6
|
Li Y, Zhang G, Cui J. Origin and Deep Evolution of Human Endogenous Retroviruses in Pan-Primates. Viruses 2022; 14:v14071370. [PMID: 35891351 PMCID: PMC9323773 DOI: 10.3390/v14071370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are viral “fossils” in the human genome that originated from the ancient integration of exogenous retroviruses. Although HERVs have sporadically been reported in nonhuman primate genomes, their deep origination in pan-primates remains to be explored. Hence, based on the in silico genomic mining of full-length HERVs in 49 primates, we performed the largest systematic survey to date of the distribution, phylogeny, and functional predictions of HERVs. Most importantly, we obtained conclusive evidence of nonhuman origin for most contemporary HERVs. We found that various supergroups, including HERVW9, HUERSP, HSERVIII, HERVIPADP, HERVK, and HERVHF, were widely distributed in Strepsirrhini, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and apes). We found that numerous HERVHFs are spread by vertical transmission within Catarrhini and one HERVHF was traced in 17 species, indicating its ancient nature. We also discovered that 164 HERVs were likely involved in genomic rearrangement and 107 HERVs were potentially coopted in the form of noncoding RNAs (ncRNAs) in humans. In summary, we provided comprehensive data on the deep origination of modern HERVs in pan-primates.
Collapse
Affiliation(s)
- Yian Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200031, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-1353 Copenhagen, Denmark;
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200031, China;
- Correspondence:
| |
Collapse
|
7
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
8
|
|
9
|
Abstract
Mavericks are virus-like mobile genetic elements found in the genomes of eukaryotes. Although Mavericks encode capsid morphogenesis homologs, their viral particles have not been observed. Here, we provide new evidence supporting the viral nature of Mavericks and the potential existence of virions. To this end, we conducted a phylogenomic analysis of Mavericks in hundreds of vertebrate genomes, discovering 134 elements with an intact coding capacity in 17 host species. We reveal an extensive genomic fossil record in 143 species and date three groups of elements to the Late Cretaceous. Bayesian phylogenetic analysis using genomic fossil orthologs suggests that Mavericks have infected osteichthyans for ∼419 My. They have undergone frequent cross-species transmissions in cyprinid fish and all core genes are subject to strong purifying selection. We conclude that vertebrate Mavericks form an ancient lineage of aquatic dsDNA viruses which are probably still functional in some vertebrate lineages.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
McEwen GK, Alquezar-Planas DE, Dayaram A, Gillett A, Tarlinton R, Mongan N, Chappell KJ, Henning J, Tan M, Timms P, Young PR, Roca AL, Greenwood AD. Retroviral integrations contribute to elevated host cancer rates during germline invasion. Nat Commun 2021; 12:1316. [PMID: 33637755 PMCID: PMC7910482 DOI: 10.1038/s41467-021-21612-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Repeated retroviral infections of vertebrate germlines have made endogenous retroviruses ubiquitous features of mammalian genomes. However, millions of years of evolution obscure many of the immediate repercussions of retroviral endogenisation on host health. Here we examine retroviral endogenisation during its earliest stages in the koala (Phascolarctos cinereus), a species undergoing germline invasion by koala retrovirus (KoRV) and affected by high cancer prevalence. We characterise KoRV integration sites (IS) in tumour and healthy tissues from 10 koalas, detecting 1002 unique IS, with hotspots of integration occurring in the vicinity of known cancer genes. We find that tumours accumulate novel IS, with proximate genes over-represented for cancer associations. We detect dysregulation of genes containing IS and identify a highly-expressed transduced oncogene. Our data provide insights into the tremendous mutational load suffered by the host during active retroviral germline invasion, a process repeatedly experienced and overcome during the evolution of vertebrate lineages.
Collapse
Affiliation(s)
- Gayle K McEwen
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Anisha Dayaram
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Rachael Tarlinton
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, UK
| | - Keith J Chappell
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Milton Tan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peter Timms
- Genecology Research Center, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Paul R Young
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany.
| |
Collapse
|
11
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
12
|
Kazi MI, Schargel RD, Boll JM. Generating Transposon Insertion Libraries in Gram-Negative Bacteria for High-Throughput Sequencing. J Vis Exp 2020. [PMID: 32716393 DOI: 10.3791/61612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.
Collapse
Affiliation(s)
- Misha I Kazi
- Department of Biology, University of Texas at Arlington
| | | | - Joseph M Boll
- Department of Biology, University of Texas at Arlington;
| |
Collapse
|
13
|
Luganini A, Gribaudo G. Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution. Front Microbiol 2020; 11:1140. [PMID: 32547531 PMCID: PMC7270195 DOI: 10.3389/fmicb.2020.01140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022] Open
Abstract
All humans are colonized by a vast diversity of microbes (bacteria, archaea, protozoa, yeast, and fungi; collectively referred to as the microbiota) and viruses (the virobiota). This latter group includes viruses infecting prokaryotic cells (bacteriophages), viruses infecting eukaryotic-host cells, and virus-derived genetic elements present in host chromosomes. Although these eukaryotic viruses are mostly known to be pathogens, they are also able to establish mutualistic relationships with humans. Little is known about the mutualistic aspects of viral infection. Nevertheless, it is clear that evolution of some animal virus-host interactions has led to benefits in the health of the hosts, as is the case with symbiogenesis and endogenization of retroviruses that has exerted a neuroprotective effect on the human brain, and an important role in the fetal development, thus on the evolution of host species. In this review, we summarize how retroviruses provide amazing examples of cooperative-evolution, i.e., successful exchange between viruses and host, and how, in some cases, the benefits have become essential for the hosts’ survival.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
15
|
Tatkiewicz W, Dickie J, Bedford F, Jones A, Atkin M, Kiernan M, Maze EA, Agit B, Farnham G, Kanapin A, Belshaw R. Characterising a human endogenous retrovirus(HERV)-derived tumour-associated antigen: enriched RNA-Seq analysis of HERV-K(HML-2) in mantle cell lymphoma cell lines. Mob DNA 2020; 11:9. [PMID: 32055257 PMCID: PMC7007669 DOI: 10.1186/s13100-020-0204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The cell-surface attachment protein (Env) of the HERV-K(HML-2) lineage of endogenous retroviruses is a potentially attractive tumour-associated antigen for anti-cancer immunotherapy. The human genome contains around 100 integrated copies (called proviruses or loci) of the HERV-K(HML-2) virus and we argue that it is important for therapy development to know which and how many of these contribute to protein expression, and how this varies across tissues. We measured relative provirus expression in HERV-K(HML-2), using enriched RNA-Seq analysis with both short- and long-read sequencing, in three Mantle Cell Lymphoma cell lines (JVM2, Granta519 and REC1). We also confirmed expression of the Env protein in two of our cell lines using Western blotting, and analysed provirus expression data from all other relevant published studies. RESULTS Firstly, in both our and other reanalysed studies, approximately 10% of the transcripts mapping to HERV-K(HML-2) came from Env-encoding proviruses. Secondly, in one cell line the majority of the protein expression appears to come from one provirus (12q14.1). Thirdly, we find a strong tissue-specific pattern of provirus expression. CONCLUSIONS A possible dependency of Env expression on a single provirus, combined with the earlier observation that this provirus is not present in all individuals and a general pattern of tissue-specific expression among proviruses, has serious implications for future HERV-K(HML-2)-targeted immunotherapy. Further research into HERV-K(HML-2) as a possible tumour-associated antigen in blood cancers requires a more targeted, proteome-based, screening protocol that will consider these polymorphisms within HERV-K(HML-2). We include a plan (and necessary alignments) for such work.
Collapse
Affiliation(s)
- Witold Tatkiewicz
- Peninsula Medical School, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - James Dickie
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Franchesca Bedford
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Alexander Jones
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Mark Atkin
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Michele Kiernan
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Emmanuel Atangana Maze
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Bora Agit
- Peninsula Medical School, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Garry Farnham
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Alexander Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
- Current address: Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Robert Belshaw
- School of Biomedical Sciences, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
16
|
Greenig M. HERVs, immunity, and autoimmunity: understanding the connection. PeerJ 2019; 7:e6711. [PMID: 30984482 PMCID: PMC6452852 DOI: 10.7717/peerj.6711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the 1960s, further investigation into endogenous retroviruses (ERVs) has challenged the conventional view of viral sequences as exclusively parasitic elements. Once presumed to be a group of passive genetic relics, it is becoming increasingly clear that this view of ERVs, while generally accurate, is incorrect in many specific cases. Research has identified ERV genes that appear to be co-opted by their mammalian hosts, but the biological function of ERV elements in humans remains a controversial subject. One area that has attracted some attention in this domain is the role of co-opted ERV elements in mammalian immune systems. The relationship between ERVs and human autoimmune diseases has also been investigated, but has historically been treated as a separate topic. This review will summarize the current evidence concerning the phenotypic significance of ERVs, both in the healthy immune system and in manifestations of autoimmunity. Furthermore, it will evaluate the relationship between these fields of study, and propose previously-unexplored molecular mechanisms through which human endogenous retroviruses might contribute to certain autoimmune pathologies. Investigation into these novel mechanisms could further our understanding of the molecular basis of autoimmune disease, and may one day provide new targets for treatment.
Collapse
Affiliation(s)
- Matthew Greenig
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Tobar-Tosse F, Veléz PE, Ocampo-Toro E, Moreno PA. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes. BMC Genomics 2018; 19:862. [PMID: 30537933 PMCID: PMC6288848 DOI: 10.1186/s12864-018-5196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Repetitive DNA sequences (Repeats) are significant regions in the human genome that have a specific genomic distribution, structure, and several binding sites for genome architecture and function. In consequence, the possible configurations of Repeats in specific and dynamic regions like the gene promoters could define footprints for molecular mechanisms, pathways, and cell function beyond their density in the genome. Here we explored the distribution of Repeats in the upstream promoter region of the human coding genes with the aim to identify specific configurations, clusters and functional meaning of those elements. Our method includes structural descriptions, hierarchical clustering, pathway association, and functional enrichment analysis. Results We report here several configurations of Repeats in the upstream promoter region (UPR), which define 2729 patterns for the 80% of the human coding genes. There are 47 types of Repeats in these configurations, where the most frequent were Alu, Low_complexity, MIR, Simple_repeat, LINE/L2, LINE/L1, hAT-Charlie, and ERV1. The distribution, length, and the high frequency of Repeats in the UPR defines several patterns and clusters, where the minimum frequency of configuration among Repeats was higher than 0.7. We found those clusters associated with cellular pathways and ontologies; thus, it was plausible to determine groups of Repeats to specific functional insights, for example, pathways for Genetic Information Processing or Metabolism shows particular groups of Repeats with specific configurations. Conclusion Based on these findings, we propose that specific configurations of repetitive elements describe frequent patterns in the upstream promoter for sets of human coding genes, which those correlated to specific and essential cell pathways and functions. Electronic supplementary material The online version of this article (10.1186/s12864-018-5196-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Patricia E Veléz
- Departamento de Biología, FACNED, Universidad del Cauca, Popayán, Colombia
| | - Eliana Ocampo-Toro
- Especialización en Hematología y Oncología Clínica, Universidad Libre Seccional Cali, Cali, Colombia
| | - Pedro A Moreno
- Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
18
|
Zhu H, Gifford RJ, Murcia PR. Distribution, Diversity, and Evolution of Endogenous Retroviruses in Perissodactyl Genomes. J Virol 2018; 92:e00927-18. [PMID: 30209175 PMCID: PMC6232481 DOI: 10.1128/jvi.00927-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/01/2018] [Indexed: 01/01/2023] Open
Abstract
The evolution of mammalian genomes has been shaped by interactions with endogenous retroviruses (ERVs). In this study, we investigated the distribution and diversity of ERVs in the mammalian order Perissodactyla, with a view to understanding their impact on the evolution of modern equids (family Equidae). We characterize the major ERV lineages in the horse genome in terms of their genomic distribution, ancestral genome organization, and time of activity. Our results show that subsequent to their ancestral divergence from rhinoceroses and tapirs, equids acquired four novel ERV lineages. We show that two of these ERV lineages proliferated extensively in the lineage leading to modern horses, and one contains loci that are actively transcribed in specific tissues. In addition, we show that the white rhinoceros has resisted germ line colonization by retroviruses for more than 54 million years-longer than any other extant mammalian species. The map of equine ERVs that we provide here will be of great utility to future studies aiming to investigate the potential functional roles of equine ERVs and their impact on equine evolution.IMPORTANCE ERVs in the host genome are highly informative about the long-term interactions of retroviruses and hosts. They are also interesting because they have influenced the evolution of mammalian genomes in various ways. In this study, we derive a calibrated timeline describing the process through which ERV diversity has been generated in the equine germ line. We determined the distribution and diversity of perissodactyl ERV lineages and inferred their retrotranspositional activity during evolution, thereby gaining insight into the long-term coevolutionary history of retroviruses and mammals. Our study provides a platform for future investigations to identify equine ERV loci involved in physiological processes and/or pathological conditions.
Collapse
Affiliation(s)
- Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
19
|
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 2018; 15:59. [PMID: 30153831 PMCID: PMC6114882 DOI: 10.1186/s12977-018-0442-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.
Collapse
Affiliation(s)
- Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697, USA
| | - Thierry Heidmann
- Department of Molecular Physiology and Pathology of Infectious and Endogenous Retroviruses, CNRS UMR 9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jonathan Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, 02467, USA.
| |
Collapse
|
20
|
Blanco-Melo D, Gifford RJ, Bieniasz PD. Reconstruction of a replication-competent ancestral murine endogenous retrovirus-L. Retrovirology 2018; 15:34. [PMID: 29716624 PMCID: PMC5930517 DOI: 10.1186/s12977-018-0416-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND About 10% of the mouse genome is composed of endogenous retroviruses (ERVs) that represent a molecular fossil record of past retroviral infections. One such retrovirus, murine ERV-L (MuERV-L) is an env-deficient ERV that has undergone episodic proliferation, with the most recent amplification occurring ~ 2 million years ago. MuERV-L related sequences have been co-opted by mice for antiretroviral defense, and possibly as promoters for some genes that regulate totipotency in early mouse embryos. However, MuERV-L sequences present in modern mouse genomes have not been observed to replicate. RESULTS Here, we describe the reconstruction of an ancestral MuERV-L (ancML) sequence through paleovirological analyses of MuERV-L elements in the modern mouse genome. The resulting MuERV-L (ancML) sequence was synthesized and a reporter gene embedded. The reconstructed MuERV-L (ancML) could replicate in a manner that is dependent on reverse transcription and generated de novo integrants. Notably, MuERV-L (ancML) exhibited a narrow host range. Interferon-α could reduce MuERV-L (ancML) replication, suggesting the existence of interferon-inducible genes that could inhibit MuERV-L replication. While mouse APOBEC3 was able to restrict the replication of MuERV-L (ancML), inspection of endogenous MuERV-L sequences suggested that the impact of APOBEC3 mediated hypermutation on MuERV-L has been minimal. CONCLUSION The reconstruction of an ancestral MuERV-L sequence highlights the potential for the retroviral fossil record to illuminate ancient events and enable studies of the impact of retroviral elements on animal evolution.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Paul D Bieniasz
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Peccoud J, Cordaux R, Gilbert C. Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges and Prospects. Bioessays 2017; 40. [DOI: 10.1002/bies.201700177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Peccoud
- UMR CNRS 7267; Ecologie et Biologie des Interactions; Equipe Ecologie Evolution Symbiose; Université de Poitiers; 86000 Poitiers France
| | - Richard Cordaux
- UMR CNRS 7267; Ecologie et Biologie des Interactions; Equipe Ecologie Evolution Symbiose; Université de Poitiers; 86000 Poitiers France
| | - Clément Gilbert
- UMR CNRS 9191; UMR 247 IRD Laboratoire Evolution, Génomes, Comportement, Écologie; Université Paris-Sud,; 91198 Gif-sur-Yvette France
| |
Collapse
|
22
|
Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG, Oh S, Heiner C, Paxinos E, Andino R. The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the Aedes aegypti Genome. Curr Biol 2017; 27:3511-3519.e7. [PMID: 29129531 DOI: 10.1016/j.cub.2017.09.067] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
The Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2]. Endogenous viral elements (EVEs) are sequences from non-retroviral viruses that are inserted into the mosquito genome and can act as templates for the production of piRNAs [3, 4]. EVEs therefore represent a record of past infections and a reservoir of potential immune memory [5]. The large-scale organization of EVEs has been difficult to resolve with short-read sequencing because they tend to integrate into repetitive regions of the genome. To define the diversity, organization, and function of EVEs, we took advantage of the contiguity associated with long-read sequencing to generate a high-quality assembly of the Ae. aegypti-derived Aag2 cell line genome, an important and widely used model system. We show EVEs are acquired through recombination with specific classes of long terminal repeat (LTR) retrotransposons and organize into large loci (>50 kbp) characterized by high LTR density. These EVE-containing loci have increased density of piRNAs compared to similar regions without EVEs. Furthermore, we detected EVE-derived piRNAs consistent with a targeted processing of persistently infecting virus genomes. We propose that comparisons of EVEs across mosquito populations may explain differences in vector competence, and further study of the structure and function of these elements in the genome of mosquitoes may lead to epidemiological interventions.
Collapse
Affiliation(s)
- Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Patrick T Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA; Department of Biology, Stanford University, E200 Clark Center, 318 Campus Drive, Stanford, CA 94305, USA
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA
| | - Matthew G Seetin
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Steve Oh
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Cheryl Heiner
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Ellen Paxinos
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
23
|
Gim JA, Kim HS. Identification and Expression Analyses of Equine Endogenous Retroviruses in Horses. Mol Cells 2017; 40:796-804. [PMID: 29047258 PMCID: PMC5682256 DOI: 10.14348/molcells.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 11/27/2022] Open
Abstract
Endogenous retroviruses (ERVs) have been integrated into vertebrate genomes and have momentously affected host organisms. Horses (Equus caballus) have been domesticated and selected for elite racing ability over centuries. ERVs played an important role in the evolutionary diversification of the horse genome. In the present study, we identified six equine ERV families (EqERVs-E1, I1, M2, P1, S1, and Y4), their full-length viral open reading frames (ORFs), and elucidated their phylogenetic relationships. The divergence time of EqERV families assuming an evolutionary rate of 0.2%/Myr indicated that EqERV-S3 (75.4 million years ago; mya) on chromosome 10 is an old EqERV family and EqERV-P5 (1.2 Mya) on chromosome 12 is a young member. During the evolutionary diversification of horses, the EqERV-I family diverged 1.7 Mya to 38.7 Mya. Reverse transcription quantitative real-time PCR (RT-qPCR) amplification of EqERV pol genes showed greater expression in the cerebellum of the Jeju horse than the Thoroughbred horse. These results could contribute further dynamic studies for horse genome in relation to EqERV gene function.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- The Genomics Institute, Life Sciences Department, UNIST, Ulsan 44919,
Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
24
|
Hayward A. Origin of the retroviruses: when, where, and how? Curr Opin Virol 2017; 25:23-27. [PMID: 28672160 PMCID: PMC5962544 DOI: 10.1016/j.coviro.2017.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Accepted: 06/19/2017] [Indexed: 12/04/2022]
Abstract
Retroviruses are a virus family of considerable medical and veterinary importance. Until recently, very little was known about deep retroviral origins. New research supports a marine origin of retroviruses, ∼460–550 million years ago. The evolutionary events leading to the origin of retroviruses remain obscure. Improved understanding of Metaviridae diversity and evolution are required for this.
Retroviruses are a virus family of considerable medical and veterinary importance. Additionally, it is now clear that endogenous retroviruses (ERVs) comprise significant portions of vertebrate genomes. Until recently, very little was known about the deep evolutionary origins of retroviruses. However, advances in genomics and bioinformatics have opened the way for great strides in understanding. Recent research employing a wide variety of bioinformatic approaches has demonstrated that retroviruses evolved during the early Palaeozoic Era, between 460 and 550 million years ago, providing the oldest inferred date estimate for any virus group. This finding presents an important framework to investigate the evolutionary transitions that led to the emergence of the retroviruses, offering potential insights into the infectious origins of a major group of pathogenic viruses.
Collapse
Affiliation(s)
- Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.
| |
Collapse
|
25
|
Marine origin of retroviruses in the early Palaeozoic Era. Nat Commun 2017; 8:13954. [PMID: 28071651 PMCID: PMC5512871 DOI: 10.1038/ncomms13954] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
Very little is known about the ancient origin of retroviruses, but owing to the discovery of their ancient endogenous viral counterparts, their early history is beginning to unfold. Here we report 36 lineages of basal amphibian and fish foamy-like endogenous retroviruses (FLERVs). Phylogenetic analyses reveal that ray-finned fish FLERVs exhibit an overall co-speciation pattern with their hosts, while amphibian FLERVs might not. We also observe several possible ancient viral cross-class transmissions, involving lobe-finned fish, shark and frog FLERVs. Sequence examination and analyses reveal two major lineages of ray-finned fish FLERVs, one of which had gained two novel accessory genes within their extraordinarily large genomes. Our phylogenetic analyses suggest that this major retroviral lineage, and therefore retroviruses as a whole, have an ancient marine origin and originated together with, if not before, their jawed vertebrate hosts >450 million years ago in the Ordovician period, early Palaeozoic Era. Endogenous retroviruses are viruses that have become integrated into the genomes of their hosts. Here, the authors investigate the evolution of foamy-like endogenous retroviruses, and, by taking into account the temporal dynamics of the rate of viral evolution, suggest that retroviruses arose at least 450 million years ago in marine vertebrates.
Collapse
|
26
|
Abstract
Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
28
|
Dang Y, Loewen R, Parikh HA, Roy P, Loewen NA. Gene transfer to the outflow tract. Exp Eye Res 2016; 158:73-84. [PMID: 27131906 DOI: 10.1016/j.exer.2016.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
Elevated intraocular pressure is the primary cause of open angle glaucoma. Outflow resistance exists within the trabecular meshwork but also at the level of Schlemm's canal and further downstream within the outflow system. Viral vectors allow to take advantage of naturally evolved, highly efficient mechanisms of gene transfer, a process that is termed transduction. They can be produced at biosafety level 2 in the lab using protocols that have evolved considerably over the last 15-20 years. Applied by an intracameral bolus, vectors follow conventional as well as uveoscleral outflow pathways. They may affect other structures in the anterior chamber depending on their transduction kinetics which can vary among species when using the same vector. Not all vectors can express long-term, a desirable feature to address the chronicity of glaucoma. Vectors that integrate into the genome of the target cell can achieve transgene function for the life of the transduced cell but are mutagenic by definition. The most prominent long-term expressing vector systems are based on lentiviruses that are derived from HIV, FIV, or EIAV. Safety considerations make non-primate lentiviral vector systems easier to work with as they are not derived from human pathogens. Non-integrating vectors are subject to degradation and attritional dilution during cell division. Lentiviral vectors have to integrate in order to express while adeno-associated viral vectors (AAV) often persist as intracellular concatemers but may also integrate. Adeno- and herpes viral vectors do not integrate and earlier generation systems might be relatively immunogenic. Nonviral methods of gene transfer are termed transfection with few restrictions of transgene size and type but often a much less efficient gene transfer that is also short-lived. Traditional gene transfer delivers exons while some vectors (lentiviral, herpes and adenoviral) allow transfer of entire genes that include introns. Recent insights have highlighted the role of non-coding RNA, most prominently, siRNA, miRNA and lncRNA. SiRNA is highly specific, miRNA is less specific, while lncRNA uses highly complex mechanisms that involve secondary structures and intergenic, intronic, overlapping, antisense, and bidirectional location. Several promising preclinical studies have targeted the RhoA or the prostaglandin pathway or modified the extracellular matrix. TGF-β and glaucoma myocilin mutants have been transduced to elevate the intraocular pressure in glaucoma models. Cell based therapies have started to show first promise. Past approaches have focused on the trabecular meshwork and the inner wall of Schlemm's canal while new strategies are concerned with modification of outflow tract elements that are downstream of the trabecular meshwork.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Ralitsa Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Hardik A Parikh
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA; New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Pritha Roy
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Nils A Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
29
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
30
|
Rivera-Perez JI, Cano RJ, Narganes-Storde Y, Chanlatte-Baik L, Toranzos GA. Retroviral DNA Sequences as a Means for Determining Ancient Diets. PLoS One 2015; 10:e0144951. [PMID: 26660678 PMCID: PMC4682816 DOI: 10.1371/journal.pone.0144951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host’s diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures.
Collapse
Affiliation(s)
- Jessica I. Rivera-Perez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- * E-mail:
| | - Raul J. Cano
- Center for Applications in Biotechnology, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Yvonne Narganes-Storde
- Center for Archaeological Research, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Luis Chanlatte-Baik
- Center for Archaeological Research, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Gary A. Toranzos
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
31
|
Mourier T, Mollerup S, Vinner L, Hansen TA, Kjartansdóttir KR, Guldberg Frøslev T, Snogdal Boutrup T, Nielsen LP, Willerslev E, Hansen AJ. Characterizing novel endogenous retroviruses from genetic variation inferred from short sequence reads. Sci Rep 2015; 5:15644. [PMID: 26493184 PMCID: PMC4616055 DOI: 10.1038/srep15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
From Illumina sequencing of DNA from brain and liver tissue from the lion, Panthera leo, and tumor samples from the pike-perch, Sander lucioperca, we obtained two assembled sequence contigs with similarity to known retroviruses. Phylogenetic analyses suggest that the pike-perch retrovirus belongs to the epsilonretroviruses, and the lion retrovirus to the gammaretroviruses. To determine if these novel retroviral sequences originate from an endogenous retrovirus or from a recently integrated exogenous retrovirus, we assessed the genetic diversity of the parental sequences from which the short Illumina reads are derived. First, we showed by simulations that we can robustly infer the level of genetic diversity from short sequence reads. Second, we find that the measures of nucleotide diversity inferred from our retroviral sequences significantly exceed the level observed from Human Immunodeficiency Virus infections, prompting us to conclude that the novel retroviruses are both of endogenous origin. Through further simulations, we rule out the possibility that the observed elevated levels of nucleotide diversity are the result of co-infection with two closely related exogenous retroviruses.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Mollerup
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kristín Rós Kjartansdóttir
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Guldberg Frøslev
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Snogdal Boutrup
- Section for Virology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Lars Peter Nielsen
- Department for Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Museum of Natural History of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
33
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
De Baets K, Littlewood DTJ. The Importance of Fossils in Understanding the Evolution of Parasites and Their Vectors. ADVANCES IN PARASITOLOGY 2015; 90:1-51. [PMID: 26597064 DOI: 10.1016/bs.apar.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Knowledge concerning the diversity of parasitism and its reach across our current understanding of the tree of life has benefitted considerably from novel molecular phylogenetic methods. However, the timing of events and the resolution of the nature of the intimate relationships between parasites and their hosts in deep time remain problematic. Despite its vagaries, the fossil record provides the only direct evidence of parasites and parasitism in the fossil record of extant and extinct lineages. Here, we demonstrate the potential of the fossil record and other lines of geological evidence to calibrate the origin and evolution of parasitism by combining different kinds of dating evidence with novel molecular clock methodologies. Other novel methods promise to provide additional evidence for the presence or the life habit of pathogens and their vectors, including the discovery and analysis of ancient DNA and other biomolecules, as well as computed tomographic methods.
Collapse
|
36
|
Slokar G, Hasler G. Human Endogenous Retroviruses as Pathogenic Factors in the Development of Schizophrenia. Front Psychiatry 2015; 6:183. [PMID: 26793126 PMCID: PMC4707225 DOI: 10.3389/fpsyt.2015.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex disorder, characterized by the interplay between genetic and environmental factors. Human endogenous retroviruses (HERVs), genetic elements that originated from infections by exogenous retroviruses millions of years ago, comprise ~8% of the human genome. Here, we provide a comprehensive review of accumulating evidence, detailing HERV aberrancies associated with schizophrenia. Studies examining the genome, transcriptome, and proteome of individuals with schizophrenia provide data that support the association of these viral elements with the disorder. Molecular differences can be found within the central nervous system and peripheral tissues. However, additional studies are needed to substantiate the reported link and to address several discrepancies among previous investigations. We further discuss potentially relevant pathogenic mechanisms to the development of schizophrenia.
Collapse
Affiliation(s)
- Gorjan Slokar
- Psychiatric University Hospital, University of Bern , Bern , Switzerland
| | - Gregor Hasler
- Psychiatric University Hospital, University of Bern , Bern , Switzerland
| |
Collapse
|
37
|
Abstract
Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host-retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host-virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host-viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host-virus coevolution better.
Collapse
|
38
|
Masson P, Hulo C, de Castro E, Foulger R, Poux S, Bridge A, Lomax J, Bougueleret L, Xenarios I, Le Mercier P. An integrated ontology resource to explore and study host-virus relationships. PLoS One 2014; 9:e108075. [PMID: 25233094 PMCID: PMC4169452 DOI: 10.1371/journal.pone.0108075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022] Open
Abstract
Our growing knowledge of viruses reveals how these pathogens manage to evade innate host defenses. A global scheme emerges in which many viruses usurp key cellular defense mechanisms and often inhibit the same components of antiviral signaling. To accurately describe these processes, we have generated a comprehensive dictionary for eukaryotic host-virus interactions. This controlled vocabulary has been detailed in 57 ViralZone resource web pages which contain a global description of all molecular processes. In order to annotate viral gene products with this vocabulary, an ontology has been built in a hierarchy of UniProt Knowledgebase (UniProtKB) keyword terms and corresponding Gene Ontology (GO) terms have been developed in parallel. The results are 65 UniProtKB keywords related to 57 GO terms, which have been used in 14,390 manual annotations; 908,723 automatic annotations and propagated to an estimation of 922,941 GO annotations. ViralZone pages, UniProtKB keywords and GO terms provide complementary tools to users, and the three resources have been linked to each other through host-virus vocabulary.
Collapse
Affiliation(s)
- Patrick Masson
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Chantal Hulo
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Edouard de Castro
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Rebecca Foulger
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Sylvain Poux
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Alan Bridge
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Jane Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Lydie Bougueleret
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Philippe Le Mercier
- SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
39
|
Croy BA. Reproductive immunology issue one: cellular and molecular biology. Cell Mol Immunol 2014; 11:405-6. [PMID: 25066420 DOI: 10.1038/cmi.2014.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
|
40
|
Katzourakis A. Paleovirology: inferring viral evolution from host genome sequence data. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120493. [PMID: 23938747 DOI: 10.1098/rstb.2012.0493] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Aris Katzourakis
- Department of Zoology, University of Oxford, , Oxford OX1 3PS, UK
| |
Collapse
|