1
|
Manna A, Sonker M, Koh D, Steiger M, Ansari A, Hu H, Quereda-Moraleda I, Grieco A, Doppler D, de Sanctis D, Basu S, Orlans J, Rose SL, Botha S, Martin-Garcia JM, Ros A. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-ray Crystallography. Anal Chem 2024; 96:20371-20381. [PMID: 39679637 PMCID: PMC11696833 DOI: 10.1021/acs.analchem.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
Collapse
Affiliation(s)
- Abhik Manna
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Domin Koh
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Steiger
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Adil Ansari
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Hu
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Isabel Quereda-Moraleda
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alice Grieco
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Diandra Doppler
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Shibom Basu
- European
Molecular Biology Laboratory, 38042 Grenoble, France
| | - Julien Orlans
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Samuel L. Rose
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Sabine Botha
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jose Manuel Martin-Garcia
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Thesing LV, Yachmenev A, González-Férez R, Küpper J. Molecular influence on nuclear-quadrupole-coupling effects in laser induced alignment. J Chem Phys 2024; 161:124115. [PMID: 39329310 DOI: 10.1063/5.0231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
We computationally studied the effect of nuclear-quadrupole interactions on the field-free impulsive alignment of different asymmetric-top molecules. Our analysis is focused on the influence of the hyperfine- and rotational-energy-level structures. These depend on the number of nuclear spins, the rotational constants, and the symmetry of the tensors involved in the nuclear spin and external field interactions. Comparing the prototypical large-nuclear-spin molecules iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, and 2,5-diiodobenzonitrile, we demonstrate that the magnitude of the hyperfine splittings compared to the rotational-energy splittings plays a crucial role in the spin-rotational dynamics after the laser pulse. Moreover, we point out that the impact of the quadrupole coupling on the rotational dynamics decreases when highly excited rotational states dominate the dynamics.
Collapse
Affiliation(s)
- Linda V Thesing
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andrey Yachmenev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rosario González-Férez
- Instituto Carlos I de Física Teórica y Computacional and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
4
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
5
|
Shelby ML, Gilbile D, Grant TD, Seuring C, Segelke BW, He W, Evans AC, Pakendorf T, Fischer P, Hunter MS, Batyuk A, Barthelmess M, Meents A, Coleman MA, Kuhl TL, Frank M. A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCRJ 2020; 7:30-41. [PMID: 31949902 PMCID: PMC6949605 DOI: 10.1107/s2052252519014003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering.
Collapse
Affiliation(s)
- M. L. Shelby
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - D. Gilbile
- University of California at Davis, California, USA
| | - T. D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, Hauptman-Woodward Institute, SUNY University at Buffalo, Buffalo, New York, USA
| | - C. Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - B. W. Segelke
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - W. He
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - A. C. Evans
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. Pakendorf
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - P. Fischer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - A. Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - M. A. Coleman
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| | - T. L. Kuhl
- University of California at Davis, California, USA
| | - M. Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- University of California at Davis, California, USA
| |
Collapse
|
6
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Spence JCH. XFELs for structure and dynamics in biology. IUCRJ 2017; 4:322-339. [PMID: 28875020 PMCID: PMC5571796 DOI: 10.1107/s2052252517005760] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
Collapse
Affiliation(s)
- J. C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
8
|
Chergui M, Thomas JM. From structure to structural dynamics: Ahmed Zewail's legacy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:043802. [PMID: 28868324 PMCID: PMC5562505 DOI: 10.1063/1.4998243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/08/2017] [Indexed: 05/19/2023]
Abstract
In this brief tribute to Ahmed Zewail, we highlight and place in the historical context, several of the major achievements that he and his colleagues have made in Femtochemistry (of which he was the principal instigator) and his introduction of ultrafast electron scattering, diffraction, microscopy and spectroscopy. By achieving a sub-picosecond temporal resolution, coupled with a picometer spatial resolution, he revolutionised our understanding of the corpus of chemical, physical, biological and materials science systems.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide and Lausanne Centre for Ultrafast Science (LACUS), ISIC, Faculté des Sciences de Base, Station 6, CH-1015 Lausanne, Switzerland
| | - John Meurig Thomas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB30FS, United Kingdom
| |
Collapse
|
9
|
|
10
|
Mullins T, Küpper J. Preface to the Special Edition on Femtochemistry and "The Hamburg Conference on Femtochemistry 2015 (FEMTO12)". STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043001. [PMID: 27648462 PMCID: PMC5001970 DOI: 10.1063/1.4961613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/13/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Terry Mullins
- Center for Free-Electron Laser Science , DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
11
|
|
12
|
Chavas LMG, Gumprecht L, Chapman HN. Possibilities for serial femtosecond crystallography sample delivery at future light sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041709. [PMID: 26798808 PMCID: PMC4711622 DOI: 10.1063/1.4921220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/06/2015] [Indexed: 05/23/2023]
Abstract
Serial femtosecond crystallography (SFX) uses X-ray pulses from free-electron laser (FEL) sources that can outrun radiation damage and thereby overcome long-standing limits in the structure determination of macromolecular crystals. Intense X-ray FEL pulses of sufficiently short duration allow the collection of damage-free data at room temperature and give the opportunity to study irreversible time-resolved events. SFX may open the way to determine the structure of biological molecules that fail to crystallize readily into large well-diffracting crystals. Taking advantage of FELs with high pulse repetition rates could lead to short measurement times of just minutes. Automated delivery of sample suspensions for SFX experiments could potentially give rise to a much higher rate of obtaining complete measurements than at today's third generation synchrotron radiation facilities, as no crystal alignment or complex robotic motions are required. This capability will also open up extensive time-resolved structural studies. New challenges arise from the resulting high rate of data collection, and in providing reliable sample delivery. Various developments for fully automated high-throughput SFX experiments are being considered for evaluation, including new implementations for a reliable yet flexible sample environment setup. Here, we review the different methods developed so far that best achieve sample delivery for X-ray FEL experiments and present some considerations towards the goal of high-throughput structure determination with X-ray FELs.
Collapse
Affiliation(s)
- L M G Chavas
- Center for Free-Electron Laser Science, DESY , Notkestraße 85, 22607 Hamburg, Germany
| | - L Gumprecht
- Center for Free-Electron Laser Science, DESY , Notkestraße 85, 22607 Hamburg, Germany
| | | |
Collapse
|
13
|
Guo F, Zhou W, Li P, Mao Z, Yennawar N, French JB, Jun Huang T. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2733-7. [PMID: 25641793 PMCID: PMC4478196 DOI: 10.1002/smll.201403262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.
Collapse
Affiliation(s)
- Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes for Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jarrod B. French
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Partridge L. Editorial 2015. Philos Trans R Soc Lond B Biol Sci 2015. [DOI: 10.1098/rstb.2014.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
List NH, Coriani S, Kongsted J, Christiansen O. Lanczos-driven coupled–cluster damped linear response theory for molecules in polarizable environments. J Chem Phys 2014; 141:244107. [DOI: 10.1063/1.4903981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nanna Holmgaard List
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via Giorgieri 1, 34127 Trieste, Italy
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ove Christiansen
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|