1
|
Yang X, Cacucci F, Burgess N, Wills TJ, Chen G. Visual boundary cues suffice to anchor place and grid cells in virtual reality. Curr Biol 2024; 34:2256-2264.e3. [PMID: 38701787 DOI: 10.1016/j.cub.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The hippocampal formation contains neurons responsive to an animal's current location and orientation, which together provide the organism with a neural map of space.1,2,3 Spatially tuned neurons rely on external landmark cues and internally generated movement information to estimate position.4,5 An important class of landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary stabilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing fields, but these fields "drift" with respect to the virtual environment over periods >5 s. Optic flow from a virtual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information. Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, suggesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength of tuning correlating with place field stability when boundaries are removed.
Collapse
Affiliation(s)
- Xiuting Yang
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guifen Chen
- School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK.
| |
Collapse
|
2
|
Parallel processing of sensory cue and spatial information in the dentate gyrus. Cell Rep 2022; 38:110257. [PMID: 35045280 PMCID: PMC8918037 DOI: 10.1016/j.celrep.2021.110257] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/28/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
During exploration, animals form an internal map of an environment by combining information about landmarks and the animal's movement, a process that depends on the hippocampus. The dentate gyrus (DG) is the first stage of the hippocampal circuit where self-motion ("where") and sensory cue information ("what") are integrated, but it remains unknown how DG neurons encode this information during cognitive map formation. Using two-photon calcium imaging in mice running on a treadmill along with online cue manipulation, we identify robust sensory cue responses in DG granule cells. Cue cell responses are stable, stimulus-specific, and accompanied by inhibition of nearby neurons. This demonstrates the existence of "cue cells" in addition to better characterized "place cells" in the DG. We hypothesize that the DG supports parallel channels of spatial and non-spatial information that contribute distinctly to downstream computations and affect roles of the DG in spatial navigation and episodic memory.
Collapse
|
3
|
Fischler-Ruiz W, Clark DG, Joshi N, Devi-Chou V, Kitch L, Schnitzer M, Abbott LF, Axel R. Olfactory landmarks and path integration converge to form a cognitive spatial map. Neuron 2021; 109:4036-4049.e5. [PMID: 34710366 DOI: 10.1016/j.neuron.2021.09.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
The convergence of internal path integration and external sensory landmarks generates a cognitive spatial map in the hippocampus. We studied how localized odor cues are recognized as landmarks by recording the activity of neurons in CA1 during a virtual navigation task. We found that odor cues enriched place cell representations, dramatically improving navigation. Presentation of the same odor at different locations generated distinct place cell representations. An odor cue at a proximal location enhanced the local place cell density and also led to the formation of place cells beyond the cue. This resulted in the recognition of a second, more distal odor cue as a distinct landmark, suggesting an iterative mechanism for extending spatial representations into unknown territory. Our results establish that odors can serve as landmarks, motivating a model in which path integration and odor landmarks interact sequentially and iteratively to generate cognitive spatial maps over long distances.
Collapse
Affiliation(s)
- Walter Fischler-Ruiz
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA
| | - David G Clark
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA
| | - Narendra Joshi
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA
| | - Virginia Devi-Chou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA
| | - Lacey Kitch
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, 94305 USA; CNC Program, Stanford University, Stanford, CA, 94305 USA
| | - Mark Schnitzer
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, 94305 USA; CNC Program, Stanford University, Stanford, CA, 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305 USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032 USA.
| | - Richard Axel
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, 10027 USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032 USA; Howard Hughes Medical Institute, Columbia University, New York, NY, 10027 USA.
| |
Collapse
|
4
|
Li T, Arleo A, Sheynikhovich D. Modeling place cells and grid cells in multi-compartment environments: Entorhinal–hippocampal loop as a multisensory integration circuit. Neural Netw 2020; 121:37-51. [DOI: 10.1016/j.neunet.2019.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023]
|
5
|
Machado M, Lefèvre N, Philoxene B, Le Gall A, Madeleine S, Fleury P, Smith P, Besnard S. New software dedicated to virtual mazes for human cognitive investigations. J Neurosci Methods 2019; 327:108388. [DOI: 10.1016/j.jneumeth.2019.108388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
|
6
|
Gaussier P, Banquet JP, Cuperlier N, Quoy M, Aubin L, Jacob PY, Sargolini F, Save E, Krichmar JL, Poucet B. Merging information in the entorhinal cortex: what can we learn from robotics experiments and modeling? J Exp Biol 2019; 222:222/Suppl_1/jeb186932. [DOI: 10.1242/jeb.186932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Place recognition is a complex process involving idiothetic and allothetic information. In mammals, evidence suggests that visual information stemming from the temporal and parietal cortical areas (‘what’ and ‘where’ information) is merged at the level of the entorhinal cortex (EC) to build a compact code of a place. Local views extracted from specific feature points can provide information important for view cells (in primates) and place cells (in rodents) even when the environment changes dramatically. Robotics experiments using conjunctive cells merging ‘what’ and ‘where’ information related to different local views show their important role for obtaining place cells with strong generalization capabilities. This convergence of information may also explain the formation of grid cells in the medial EC if we suppose that: (1) path integration information is computed outside the EC, (2) this information is compressed at the level of the EC owing to projection (which follows a modulo principle) of cortical activities associated with discretized vector fields representing angles and/or path integration, and (3) conjunctive cells merge the projections of different modalities to build grid cell activities. Applying modulo projection to visual information allows an interesting compression of information and could explain more recent results on grid cells related to visual exploration. In conclusion, the EC could be dedicated to the build-up of a robust yet compact code of cortical activity whereas the hippocampus proper recognizes these complex codes and learns to predict the transition from one state to another.
Collapse
Affiliation(s)
- Philippe Gaussier
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Jean Paul Banquet
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Nicolas Cuperlier
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Mathias Quoy
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Lise Aubin
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
- Euromov, Université de Montpellier, Montpellier 34090, France
| | - Pierre-Yves Jacob
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Etienne Save
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Bruno Poucet
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| |
Collapse
|
7
|
|
8
|
Abstract
We present a model of how neural representations of egocentric spatial experiences in parietal cortex interface with viewpoint-independent representations in medial temporal areas, via retrosplenial cortex, to enable many key aspects of spatial cognition. This account shows how previously reported neural responses (place, head-direction and grid cells, allocentric boundary- and object-vector cells, gain-field neurons) can map onto higher cognitive function in a modular way, and predicts new cell types (egocentric and head-direction-modulated boundary- and object-vector cells). The model predicts how these neural populations should interact across multiple brain regions to support spatial memory, scene construction, novelty-detection, 'trace cells', and mental navigation. Simulated behavior and firing rate maps are compared to experimental data, for example showing how object-vector cells allow items to be remembered within a contextual representation based on environmental boundaries, and how grid cells could update the viewpoint in imagery during planning and short-cutting by driving sequential place cell activity.
Collapse
Affiliation(s)
- Andrej Bicanski
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| | - Neil Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
10
|
Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames. J Neurosci 2018; 38:2430-2441. [PMID: 29386260 DOI: 10.1523/jneurosci.2432-17.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 01/25/2018] [Indexed: 01/09/2023] Open
Abstract
Primates rely predominantly on vision to gather information from the environment and neurons representing visual space and gaze position are found in many brain areas. Within the medial temporal lobe, a brain region critical for memory, neurons in the entorhinal cortex of macaque monkeys exhibit spatial selectivity for gaze position. Specifically, the firing rate of single neurons reflects fixation location within a visual image (Killian et al., 2012). In the rodents, entorhinal cells such as grid cells, border cells, and head direction cells show spatial representations aligned to visual environmental features instead of the body (Hafting et al., 2005; Sargolini et al., 2006; Solstad et al., 2008; Diehl et al., 2017). However, it is not known whether similar allocentric representations exist in primate entorhinal cortex. Here, we recorded neural activity in the entorhinal cortex in two male rhesus monkeys during a naturalistic, free-viewing task. Our data reveal that a majority of entorhinal neurons represent gaze position and that simultaneously recorded neurons represent gaze position relative to distinct spatial reference frames, with some neurons aligned to the visual image and others aligned to the monkey's head position. Our results also show that entorhinal neural activity can be used to predict gaze position with a high degree of accuracy. These findings demonstrate that visuospatial representation is a fundamental property of entorhinal neurons in primates and suggest that entorhinal cortex may support relational memory and motor planning by coding attentional locus in distinct, behaviorally relevant frames of reference.SIGNIFICANCE STATEMENT The entorhinal cortex, a brain area important for memory, shows striking spatial activity in rodents through grid cells, border cells, head direction cells, and nongrid spatial cells. The majority of entorhinal neurons signal the location of a rodent relative to visual environmental cues, representing the location of the animal relative to space in the world instead of the body. Recently, we found that entorhinal neurons can signal location of gaze while a monkey explores images visually. Here, we report that spatial entorhinal neurons are widespread in the monkey and these neurons are capable of showing a world-based spatial reference frame locked to the bounds of explored images. These results help connect the extensive findings in rodents to the primate.
Collapse
|
11
|
Chen G, Manson D, Cacucci F, Wills TJ. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse. Curr Biol 2016; 26:2335-42. [PMID: 27498565 PMCID: PMC5026695 DOI: 10.1016/j.cub.2016.06.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022]
Abstract
Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism’s position by integrating speed and direction of movement [2, 3, 4, 5, 6, 7, 8, 9, 10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Grid cell firing patterns are disrupted in darkness in the mouse Grid cells are disrupted even when head direction cell signaling is preserved Absence of visual input alters movement velocity modulation of theta frequency Temporal firing relationships between grid cell pairs are preserved in the dark
Collapse
Affiliation(s)
- Guifen Chen
- Department of Neuroscience, Physiology, and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| | - Daniel Manson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, UCL, Gower Place, London WC1E 6BT, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Abstract
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'.
Collapse
Affiliation(s)
- Andrew Glennerster
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 7BE, UK
| |
Collapse
|
13
|
Aggarwal A. Neuromorphic VLSI realization of the hippocampal formation. Neural Netw 2016; 77:29-40. [PMID: 26914394 DOI: 10.1016/j.neunet.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/25/2022]
Abstract
The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is utilized by the hippocampal place cells for calculation of position of an animal during spatial navigation. The place cells are thought to function as an internal GPS for the brain and provide a spatiotemporal stamp on episodic memories. Several computational neuroscience models have been proposed to explain the place specific firing patterns of the cells of the hippocampal formation - including the GRIDSmap model for grid cells and Bayesian integration for place cells. In this work, we present design and measurement results from a first ever system of silicon circuits which successfully realize the function of the hippocampal formation of brain based on these models.
Collapse
|
14
|
Kraus BJ, Brandon MP, Robinson RJ, Connerney MA, Hasselmo ME, Eichenbaum H. During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run. Neuron 2016; 88:578-89. [PMID: 26539893 DOI: 10.1016/j.neuron.2015.09.031] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/19/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location, but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience.
Collapse
Affiliation(s)
- Benjamin J Kraus
- Center for Memory and Brain, Boston University, Boston, MA 02215, USA.
| | - Mark P Brandon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Robert J Robinson
- Center for Memory and Brain, Boston University, Boston, MA 02215, USA
| | | | | | - Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Villette V, Malvache A, Tressard T, Dupuy N, Cossart R. Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information. Neuron 2016; 88:357-66. [PMID: 26494280 PMCID: PMC4622933 DOI: 10.1016/j.neuron.2015.09.052] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/23/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022]
Abstract
The hippocampus is essential for spatiotemporal cognition. Sequences of neuronal activation provide a substrate for this fundamental function. At the behavioral timescale, these sequences have been shown to occur either in the presence of successive external landmarks or through internal mechanisms within an episodic memory task. In both cases, activity is externally constrained by the organization of the task and by the size of the environment explored. Therefore, it remains unknown whether hippocampal activity can self-organize into a default mode in the absence of any external memory demand or spatiotemporal boundary. Here we show that, in the presence of self-motion cues, a population code integrating distance naturally emerges in the hippocampus in the form of recurring sequences. These internal dynamics clamp spontaneous travel since run distance distributes into integer multiples of the span of these sequences. These sequences may thus guide navigation when external landmarks are reduced. Without external cues, hippocampal dynamics spontaneously display recurring sequences Recurring sequences span across a fixed traveled distance Sequences are an internal cognitive template that shapes mouse behavior Sequences display an internally hardwired functional structure
Collapse
Affiliation(s)
- Vincent Villette
- Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France; Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France; Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Arnaud Malvache
- Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France; Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France; Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France.
| | - Thomas Tressard
- Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France; Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France; Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Nathalie Dupuy
- Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France; Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France; Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| | - Rosa Cossart
- Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France; Aix-Marseille Université, Unité Mixte de Recherche S901, 13009 Marseille, France; Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France.
| |
Collapse
|
16
|
Rivera-Rubio J, Alexiou I, Bharath AA. Appearance-based indoor localization: A comparison of patch descriptor performance. Pattern Recognit Lett 2015. [DOI: 10.1016/j.patrec.2015.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Poucet B, Chaillan F, Truchet B, Save E, Sargolini F, Hok V. Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation. Front Behav Neurosci 2015; 9:292. [PMID: 26578920 PMCID: PMC4626564 DOI: 10.3389/fnbeh.2015.00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/15/2015] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of place cells, the hippocampus is thought to be the neural substrate of a cognitive map. The later discovery of head direction cells, grid cells and border cells, as well as of cells with more complex spatial signals, has led to the idea that there is a brain system devoted to providing the animal with the information required to achieve efficient navigation. Current questioning is focused on how these signals are integrated in the brain. In this review, we focus on the issue of how self-localization is performed in the hippocampal place cell map. To do so, we first shortly review the sensory information used by place cells and then explain how this sensory information can lead to two coding modes, respectively based on external landmarks (allothetic information) and self-motion cues (idiothetic information). We hypothesize that these two modes can be used concomitantly with the rat shifting from one mode to the other during its spatial displacements. We then speculate that sequential reactivation of place cells could participate in the resetting of self-localization under specific circumstances and in learning a new environment. Finally, we provide some predictions aimed at testing specific aspects of the proposed ideas.
Collapse
Affiliation(s)
- Bruno Poucet
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France
| | - Franck Chaillan
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France
| | - Bruno Truchet
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France
| | - Etienne Save
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France ; Institut Universitaire de France Paris, France
| | - Vincent Hok
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University Marseille, France ; Fédération 3C, CNRS and Aix-Marseille University Marseille, France
| |
Collapse
|
18
|
Aboitiz F, Montiel JF. Olfaction, navigation, and the origin of isocortex. Front Neurosci 2015; 9:402. [PMID: 26578863 PMCID: PMC4621927 DOI: 10.3389/fnins.2015.00402] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022] Open
Abstract
There are remarkable similarities between the brains of mammals and birds in terms of microcircuit architecture, despite obvious differences in gross morphology and development. While in reptiles and birds the most expanding component (the dorsal ventricular ridge) displays an overall nuclear shape and derives from the lateral and ventral pallium, in mammals a dorsal pallial, six-layered isocortex shows the most remarkable elaboration. Regardless of discussions about possible homologies between mammalian and avian brains, a main question remains in explaining the emergence of the mammalian isocortex, because it represents a unique phenotype across amniotes. In this article, we propose that the origin of the isocortex was driven by behavioral adaptations involving olfactory driven goal-directed and navigating behaviors. These adaptations were linked with increasing sensory development, which provided selective pressure for the expansion of the dorsal pallium. The latter appeared as an interface in olfactory-hippocampal networks, contributing somatosensory information for navigating behavior. Sensory input from other modalities like vision and audition were subsequently recruited into this expanding region, contributing to multimodal associative networks.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
19
|
Muessig L, Hauser J, Wills TJ, Cacucci F. A Developmental Switch in Place Cell Accuracy Coincides with Grid Cell Maturation. Neuron 2015; 86:1167-73. [PMID: 26050036 PMCID: PMC4460188 DOI: 10.1016/j.neuron.2015.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 11/29/2022]
Abstract
Place cell firing relies on information about self-motion and the external environment, which may be conveyed by grid and border cells, respectively. Here, we investigate the possible contributions of these cell types to place cell firing, taking advantage of a developmental time window during which stable border cell, but not grid cell, inputs are available. We find that before weaning, the place cell representation of space is denser, more stable, and more accurate close to environmental boundaries. Boundary-responsive neurons such as border cells may, therefore, contribute to stable and accurate place fields in pre-weanling rats. By contrast, place cells become equally stable and accurate throughout the environment after weaning and in adulthood. This developmental switch in place cell accuracy coincides with the emergence of the grid cell network in the entorhinal cortex, raising the possibility that grid cells contribute to stable place fields when an organism is far from environmental boundaries. During early development, place cell maps are maximally stable near boundaries At weaning age, place cell maps switch to become equally accurate throughout space This developmental switch coincides with the emergence of the grid cell network Boundary cells may support place maps at edges, and grid cells in the environment center
Collapse
Affiliation(s)
- Laurenz Muessig
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonas Hauser
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Jauffret A, Cuperlier N, Gaussier P. From grid cells and visual place cells to multimodal place cell: a new robotic architecture. Front Neurorobot 2015; 9:1. [PMID: 25904862 PMCID: PMC4388131 DOI: 10.3389/fnbot.2015.00001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/13/2015] [Indexed: 11/13/2022] Open
Abstract
In the present study, a new architecture for the generation of grid cells (GC) was implemented on a real robot. In order to test this model a simple place cell (PC) model merging visual PC activity and GC was developed. GC were first built from a simple "several to one" projection (similar to a modulo operation) performed on a neural field coding for path integration (PI). Robotics experiments raised several practical and theoretical issues. To limit the important angular drift of PI, head direction information was introduced in addition to the robot proprioceptive signal coming from the wheel rotation. Next, a simple associative learning between visual place cells and the neural field coding for the PI has been used to recalibrate the PI and to limit its drift. Finally, the parameters controlling the shape of the PC built from the GC have been studied. Increasing the number of GC obviously improves the shape of the resulting place field. Yet, other parameters such as the discretization factor of PI or the lateral interactions between GC can have an important impact on the place field quality and avoid the need of a very large number of GC. In conclusion, our results show our GC model based on the compression of PI is congruent with neurobiological studies made on rodent. GC firing patterns can be the result of a modulo transformation of PI information. We argue that such a transformation may be a general property of the connectivity from the cortex to the entorhinal cortex. Our model predicts that the effect of similar transformations on other kinds of sensory information (visual, tactile, auditory, etc…) in the entorhinal cortex should be observed. Consequently, a given EC cell should react to non-contiguous input configurations in non-spatial conditions according to the projection from its different inputs.
Collapse
Affiliation(s)
- Adrien Jauffret
- ETIS, UMR 8051/ENSEA, Université Cergy-Pontoise, CNRSCergy, France
| | | | | |
Collapse
|
21
|
Dissociating position and heading estimations: Rotated visual orientation cues perceived after walking reset headings but not positions. Cognition 2014; 133:553-71. [DOI: 10.1016/j.cognition.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022]
|
22
|
Brandon MP, Koenig J, Leutgeb JK, Leutgeb S. New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron 2014; 82:789-96. [PMID: 24853939 DOI: 10.1016/j.neuron.2014.04.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 11/15/2022]
Abstract
The hippocampus generates distinct neural codes to disambiguate similar experiences, a process thought to underlie episodic memory function. Entorhinal grid cells provide a prominent spatial signal to hippocampus, and changes in their firing pattern could thus generate a distinct spatial code in each context. We examined whether we would preclude the emergence of new spatial representations in a novel environment during muscimol inactivation of the medial septal area, a manipulation known to disrupt theta oscillations and grid cell firing. We found that new, highly distinct configurations of place fields emerged immediately and remained stable during the septal inactivation. The new place code persisted when theta oscillations had recovered. Theta rhythmicity and feedforward input from grid cell networks were thus not required to generate new spatial representations in the hippocampus.
Collapse
Affiliation(s)
- Mark P Brandon
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julie Koenig
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Jacob PY, Poucet B, Liberge M, Save E, Sargolini F. Vestibular control of entorhinal cortex activity in spatial navigation. Front Integr Neurosci 2014; 8:38. [PMID: 24926239 PMCID: PMC4046575 DOI: 10.3389/fnint.2014.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/23/2014] [Indexed: 12/02/2022] Open
Abstract
Navigation in rodents depends on both self-motion (idiothetic) and external (allothetic) information. Idiothetic information has a predominant role when allothetic information is absent or irrelevant. The vestibular system is a major source of idiothetic information in mammals. By integrating the signals generated by angular and linear accelerations during exploration, a rat is able to generate and update a vector pointing to its starting place and to perform accurate return. This navigation strategy, called path integration, has been shown to involve a network of brain structures. Among these structures, the entorhinal cortex (EC) may play a pivotal role as suggested by lesion and electrophysiological data. In particular, it has been recently discovered that some neurons in the medial EC display multiple firing fields producing a regular grid-like pattern across the environment. Such regular activity may arise from the integration of idiothetic information. This hypothesis would be strongly strengthened if it was shown that manipulation of vestibular information interferes with grid cell activity. In the present paper we review neuroanatomical and functional evidence indicating that the vestibular system influences the activity of the brain network involved in spatial navigation. We also provide new data on the effects of reversible inactivation of the peripheral vestibular system on the EC theta rhythm. The main result is that tetrodotoxin (TTX) administration abolishes velocity-controlled theta oscillations in the EC, indicating that vestibular information is necessary for EC activity. Since recent data demonstrate that disruption of theta rhythm in the medial EC induces a disorganization of grid cell firing, our findings indicate that the integration of idiothetic information in the EC is essential to form a spatial representation of the environment.
Collapse
Affiliation(s)
- Pierre-Yves Jacob
- Laboratoire de Neurosciences Cognitives UMR7291, Fédération 3C FR3512, Université d'Aix-Marseille - CNRS Marseille, France
| | - Bruno Poucet
- Laboratoire de Neurosciences Cognitives UMR7291, Fédération 3C FR3512, Université d'Aix-Marseille - CNRS Marseille, France
| | - Martine Liberge
- Laboratoire de Neurosciences Cognitives UMR7291, Fédération 3C FR3512, Université d'Aix-Marseille - CNRS Marseille, France
| | - Etienne Save
- Laboratoire de Neurosciences Cognitives UMR7291, Fédération 3C FR3512, Université d'Aix-Marseille - CNRS Marseille, France
| | - Francesca Sargolini
- Laboratoire de Neurosciences Cognitives UMR7291, Fédération 3C FR3512, Université d'Aix-Marseille - CNRS Marseille, France ; Institut Universitaire de France Paris, France
| |
Collapse
|
24
|
Hartley T, Lever C, Burgess N, O'Keefe J. Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120510. [PMID: 24366125 PMCID: PMC3866435 DOI: 10.1098/rstb.2012.0510] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past four decades, research has revealed that cells in the hippocampal formation provide an exquisitely detailed representation of an animal's current location and heading. These findings have provided the foundations for a growing understanding of the mechanisms of spatial cognition in mammals, including humans. We describe the key properties of the major categories of spatial cells: place cells, head direction cells, grid cells and boundary cells, each of which has a characteristic firing pattern that encodes spatial parameters relating to the animal's current position and orientation. These properties also include the theta oscillation, which appears to play a functional role in the representation and processing of spatial information. Reviewing recent work, we identify some themes of current research and introduce approaches to computational modelling that have helped to bridge the different levels of description at which these mechanisms have been investigated. These range from the level of molecular biology and genetics to the behaviour and brain activity of entire organisms. We argue that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition.
Collapse
Affiliation(s)
- Tom Hartley
- Department of Psychology, University of York, York, UK
| | - Colin Lever
- Department of Psychology, University of Durham, Durham, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience and Institute of Neurology, University College London, London, UK
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
25
|
Bush D, Barry C, Burgess N. What do grid cells contribute to place cell firing? Trends Neurosci 2014; 37:136-45. [PMID: 24485517 PMCID: PMC3945817 DOI: 10.1016/j.tins.2013.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/26/2022]
Abstract
The unitary firing fields of hippocampal place cells are commonly assumed to be generated by input from entorhinal grid cell modules with differing spatial scales. Here, we review recent research that brings this assumption into doubt. Instead, we propose that place cell spatial firing patterns are determined by environmental sensory inputs, including those representing the distance and direction to environmental boundaries, while grid cells provide a complementary self-motion related input that contributes to maintaining place cell firing. In this view, grid and place cell firing patterns are not successive stages of a processing hierarchy, but complementary and interacting representations that work in combination to support the reliable coding of large-scale space.
Collapse
Affiliation(s)
- Daniel Bush
- University College London (UCL) Institute of Cognitive Neuroscience, London, WC1N 3AR, UK; UCL Institute of Neurology, London, WC1N 3BG, UK.
| | - Caswell Barry
- UCL Department of Cell and Developmental Biology, London, WC1E 6BT, UK
| | - Neil Burgess
- University College London (UCL) Institute of Cognitive Neuroscience, London, WC1N 3AR, UK; UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|