1
|
Krug K. Coding Perceptual Decisions: From Single Units to Emergent Signaling Properties in Cortical Circuits. Annu Rev Vis Sci 2020; 6:387-409. [PMID: 32600168 DOI: 10.1146/annurev-vision-030320-041223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spiking activity in single neurons of the primate visual cortex has been tightly linked to perceptual decisions. Any mechanism that reads out these perceptual signals to support behavior must respect the underlying neuroanatomy that shapes the functional properties of sensory neurons. Spatial distribution and timing of inputs to the next processing levels are critical, as conjoint activity of precursor neurons increases the spiking rate of downstream neurons and ultimately drives behavior. I set out how correlated activity might coalesce into a micropool of task-sensitive neurons signaling a particular percept to determine perceptual decision signals locally and for flexible interarea transmission depending on the task context. As data from more and more neurons and their complex interactions are analyzed, the space of computational mechanisms must be constrained based on what is plausible within neurobiological limits. This review outlines experiments to test the new perspectives offered by these extended methods.
Collapse
Affiliation(s)
- Kristine Krug
- Lehrstuhl für Sensorische Physiologie, Institut für Biologie, Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany; .,Leibniz-Institut für Neurobiologie, 39118 Magdeburg, Germany.,Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
2
|
The contribution of nonhuman primate research to the understanding of emotion and cognition and its clinical relevance. Proc Natl Acad Sci U S A 2019; 116:26305-26312. [PMID: 31871162 DOI: 10.1073/pnas.1902293116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Psychiatric disorders are often conceptualized as arising from dysfunctional interactions between neural systems mediating cognitive and emotional processes. Mechanistic insights into these interactions have been lacking in part because most work in emotions has occurred in rodents, often without concurrent manipulations of cognitive variables. Nonhuman primate (NHP) model systems provide a powerful platform for investigating interactions between cognitive operations and emotions due to NHPs' strong homology with humans in behavioral repertoire and brain anatomy. Recent electrophysiological studies in NHPs have delineated how neural signals in the amygdala, a brain structure linked to emotion, predict impending appetitive and aversive stimuli. In addition, abstract conceptual information has also been shown to be represented in the amygdala and in interconnected brain structures such as the hippocampus and prefrontal cortex. Flexible adjustments of emotional behavior require the ability to apply conceptual knowledge and generalize to different, often novel, situations, a hallmark example of interactions between cognitive and emotional processes. Elucidating the neural mechanisms that explain how the brain processes conceptual information in relation to emotional variables promises to provide important insights into the pathophysiology accounting for symptoms in neuropsychiatric disorders.
Collapse
|
3
|
Headley DB, Kanta V, Kyriazi P, Paré D. Embracing Complexity in Defensive Networks. Neuron 2019; 103:189-201. [PMID: 31319049 PMCID: PMC6641575 DOI: 10.1016/j.neuron.2019.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022]
Abstract
The neural basis of defensive behaviors continues to attract much interest, not only because they are important for survival but also because their dysregulation may be at the origin of anxiety disorders. Recently, a dominant approach in the field has been the optogenetic manipulation of specific circuits or cell types within these circuits to dissect their role in different defensive behaviors. While the usefulness of optogenetics is unquestionable, we argue that this method, as currently applied, fosters an atomistic conceptualization of defensive behaviors, which hinders progress in understanding the integrated responses of nervous systems to threats. Instead, we advocate for a holistic approach to the problem, including observational study of natural behaviors and their neuronal correlates at multiple sites, coupled to the use of optogenetics, not to globally turn on or off neurons of interest, but to manipulate specific activity patterns hypothesized to regulate defensive behaviors.
Collapse
Affiliation(s)
- Drew B Headley
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Vasiliki Kanta
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Pinelopi Kyriazi
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA
| | - Denis Paré
- Center for Molecular & Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Smedley EB, DiLeo A, Smith KS. Circuit directionality for motivation: Lateral accumbens-pallidum, but not pallidum-accumbens, connections regulate motivational attraction to reward cues. Neurobiol Learn Mem 2019; 162:23-35. [PMID: 31096040 DOI: 10.1016/j.nlm.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Sign-tracking behavior, in which animals interact with a cue that predicts reward, provides an example of how incentive salience can be attributed to cues and elicit motivation. The nucleus accumbens (NAc) and ventral pallidum (VP) are two regions involved in cue-driven motivation. The VP, and NAc subregions including the medial shell and core, are critical for sign-tracking. Further, connections between the medial shell and VP are known to participate in sign-tracking and other motivated behaviors. The NAc lateral shell (NAcLSh) is a distinct and understudied subdivision of the NAc, and its contribution to the process by which reward cues acquire value remains unclear. The NAcLSh has been implicated in reward-directed behavior, and has reciprocal connections with the VP, suggesting that NAcLSh and VP interactions could be important mechanisms for incentive salience. Here, we use DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) and an intersectional viral delivery strategy to produce a biased inhibition of NAcLSh neurons projecting to the VP, and vice versa. We find that disruption of connections from NAcLSh to VP reduces sign-tracking behavior while not affecting consumption of food rewards. In contrast, VP to NAcLSh disruption affected neither sign-tracking nor reward consumption, but did produce a greater shift in animals' behavior more towards the reward source when it was available. These findings indicate that the NAcLSh → VP pathway plays an important role in guiding animals towards reward cues, while VP → NAcLSh back-projections may not and may instead bias motivated behavior towards rewards.
Collapse
Affiliation(s)
- Elizabeth B Smedley
- Dartmouth College, Department of Psychological and Brain Sciences, United States.
| | - Alyssa DiLeo
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, United States
| | - Kyle S Smith
- Dartmouth College, Department of Psychological and Brain Sciences, United States
| |
Collapse
|
5
|
He Q, Wang J, Hu H. Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neurosci Bull 2018; 35:369-377. [PMID: 30255458 DOI: 10.1007/s12264-018-0291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.
Collapse
Affiliation(s)
- Qiye He
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| | - Jihua Wang
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hailan Hu
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Ono M, Muramoto S, Ma L, Kato N. Optogenetics Identification of a Neuronal Type with a Glass Optrode in Awake Mice. J Vis Exp 2018. [PMID: 30010633 DOI: 10.3791/57781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is a major concern in neuroscience how different types of neurons work in neural circuits. Recent advances in optogenetics have enabled the identification of the neuronal type in in vivo electrophysiological experiments in broad brain regions. In optogenetics experiments, it is critical to deliver the light to the recording site. However, it is often hard to deliver the stimulation light to the deep brain regions from the brain's surface. Especially, it is difficult for the stimulation light to reach the deep brain regions when the optical transparency of the brain surface is low, as is often the case with recordings from awake animals. Here, we describe a method to record spike responses to the light from an awake mouse using a custom-made glass optrode. In this method, the light is delivered through the recording glass electrode so that it is possible to reliably stimulate the recorded neuron with light in the deep brain regions. This custom-made optrode system consists of accessible and inexpensive materials and is easy to assemble.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University;
| | | | - Lanlan Ma
- Department of Physiology, Kanazawa Medical University
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University
| |
Collapse
|
7
|
Meyza KZ, Bartal IBA, Monfils MH, Panksepp JB, Knapska E. The roots of empathy: Through the lens of rodent models. Neurosci Biobehav Rev 2017; 76:216-234. [PMID: 27825924 PMCID: PMC5418107 DOI: 10.1016/j.neubiorev.2016.10.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 11/27/2022]
Abstract
Empathy is a phenomenon often considered dependent on higher-order emotional control and an ability to relate to the emotional state of others. It is, by many, attributed only to species having well-developed cortical circuits capable of performing such complex tasks. However, over the years, a wealth of data has been accumulated showing that rodents are capable not only of sharing emotional states of their conspecifics, but also of prosocial behavior driven by such shared experiences. The study of rodent empathic behaviors is only now becoming an independent research field. Relevant animal models allow precise manipulation of neural networks, thereby offering insight into the foundations of empathy in the mammalian brains. Here we review the data on empathic behaviors in rat and mouse models, their neurobiological and neurophysiological correlates, and the factors influencing these behaviors. We discuss how simple rodent models of empathy enhance our understanding of how brain controls empathic behaviors.
Collapse
Affiliation(s)
- K Z Meyza
- Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - I Ben-Ami Bartal
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - M H Monfils
- Department of Psychology, University of Texas, Austin, TX, USA
| | - J B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - E Knapska
- Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
8
|
Denny CA, Lebois E, Ramirez S. From Engrams to Pathologies of the Brain. Front Neural Circuits 2017; 11:23. [PMID: 28439228 PMCID: PMC5383718 DOI: 10.3389/fncir.2017.00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022] Open
Abstract
Memories are the experiential threads that tie our past to the present. The biological realization of a memory is termed an engram—the enduring biochemical and physiological processes that enable learning and retrieval. The past decade has witnessed an explosion of engram research that suggests we are closing in on boundary conditions for what qualifies as the physical manifestation of memory. In this review, we provide a brief history of engram research, followed by an overview of the many rodent models available to probe memory with intersectional strategies that have yielded unprecedented spatial and temporal resolution over defined sets of cells. We then discuss the limitations and controversies surrounding engram research and subsequently attempt to reconcile many of these views both with data and by proposing a conceptual shift in the strategies utilized to study memory. We finally bridge this literature with human memory research and disorders of the brain and end by providing an experimental blueprint for future engram studies in mammals. Collectively, we believe that we are in an era of neuroscience where engram research has transitioned from ephemeral and philosophical concepts to provisional, tractable, experimental frameworks for studying the cellular, circuit and behavioral manifestations of memory.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Psychiatry, Columbia UniversityNew York, NY, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH)New York, NY, USA
| | - Evan Lebois
- Neuroscience and Pain Research Unit, Pfizer Inc.Cambridge, MA, USA
| | - Steve Ramirez
- Center for Brain Science, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
9
|
Correia SS, Goosens KA. Input-specific contributions to valence processing in the amygdala. ACTA ACUST UNITED AC 2016; 23:534-43. [PMID: 27634144 PMCID: PMC5026206 DOI: 10.1101/lm.037887.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/26/2016] [Indexed: 10/25/2022]
Abstract
Reward and punishment are often thought of as opposing processes: rewards and the environmental cues that predict them elicit approach and consummatory behaviors, while punishments drive aversion and avoidance behaviors. This framework suggests that there may be segregated brain circuits for these valenced behaviors. The basolateral amygdala (BLA) is one brain region that contributes to both types of motivated behavior. Individual neurons in the BLA can favor positive over negative valence, or vice versa, but these neurons are intermingled, showing no anatomical segregation. The amygdala receives inputs from many brain areas and current theories posit that encoding of positive versus negative valence by BLA neurons is determined by the wiring of each neuron. Specifically, many projections from other brain areas that respond to positive and negative valence stimuli and predictive cues project strongly to the BLA and likely contribute to valence processing within the BLA. Here we review three of these areas, the basal forebrain, the dorsal raphe nucleus and the ventral tegmental area, and discuss how these may promote encoding of positive and negative valence within the BLA.
Collapse
Affiliation(s)
- Susana S Correia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ki A Goosens
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Krug K, Salzman CD, Waddell S. Understanding the brain by controlling neural activity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140201. [PMID: 26240417 PMCID: PMC4528814 DOI: 10.1098/rstb.2014.0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry.
Collapse
Affiliation(s)
- Kristine Krug
- Deparment of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Daniel Salzman
- Departments of Neuroscience and Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY 10032, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| |
Collapse
|