1
|
Sultana Z, Dorel M, Klinger B, Sieber A, Dunkel I, Blüthgen N, Schulz EG. Modeling unveils sex differences of signaling networks in mouse embryonic stem cells. Mol Syst Biol 2023; 19:e11510. [PMID: 37735975 PMCID: PMC10632733 DOI: 10.15252/msb.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
For a short period during early development of mammalian embryos, both X chromosomes in females are active, before dosage compensation is ensured through X-chromosome inactivation. In female mouse embryonic stem cells (mESCs), which carry two active X chromosomes, increased X-dosage affects cell signaling and impairs differentiation. The underlying mechanisms, however, remain poorly understood. To dissect X-dosage effects on the signaling network in mESCs, we combine systematic perturbation experiments with mathematical modeling. We quantify the response to a variety of inhibitors and growth factors for cells with one (XO) or two X chromosomes (XX). We then build models of the signaling networks in XX and XO cells through a semi-quantitative modeling approach based on modular response analysis. We identify a novel negative feedback in the PI3K/AKT pathway through GSK3. Moreover, the presence of a single active X makes mESCs more sensitive to the differentiation-promoting Activin A signal and leads to a stronger RAF1-mediated negative feedback in the FGF-triggered MAPK pathway. The differential response to these differentiation-promoting pathways can explain the impaired differentiation propensity of female mESCs.
Collapse
Affiliation(s)
- Zeba Sultana
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Mathurin Dorel
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Bertram Klinger
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Anja Sieber
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Ilona Dunkel
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Nils Blüthgen
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Edda G Schulz
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| |
Collapse
|
2
|
Keniry A, Jansz N, Hickey PF, Breslin KA, Iminitoff M, Beck T, Gouil Q, Ritchie ME, Blewitt ME. A method for stabilising the XX karyotype in female mESC cultures. Development 2022; 149:285125. [PMID: 36355065 PMCID: PMC10112917 DOI: 10.1242/dev.200845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Mutzel V, Schulz EG. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. Bioessays 2021; 42:e1900163. [PMID: 32189388 DOI: 10.1002/bies.201900163] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Indexed: 02/06/2023]
Abstract
X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
4
|
Ko MC, Frankl-Vilches C, Bakker A, Gahr M. The Gene Expression Profile of the Song Control Nucleus HVC Shows Sex Specificity, Hormone Responsiveness, and Species Specificity Among Songbirds. Front Neurosci 2021; 15:680530. [PMID: 34135731 PMCID: PMC8200640 DOI: 10.3389/fnins.2021.680530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Singing occurs in songbirds of both sexes, but some species show typical degrees of sex-specific performance. We studied the transcriptional sex differences in the HVC, a brain nucleus critical for song pattern generation, of the forest weaver (Ploceus bicolor), the blue-capped cordon-bleu (Uraeginthus cyanocephalus), and the canary (Serinus canaria), which are species that show low, medium, and high levels of sex-specific singing, respectively. We observed persistent sex differences in gene expression levels regardless of the species-specific sexual singing phenotypes. We further studied the HVC transcriptomes of defined phenotypes of canary, known for its testosterone-sensitive seasonal singing. By studying both sexes of canaries during both breeding and non-breeding seasons, non-breeding canaries treated with testosterone, and spontaneously singing females, we found that the circulating androgen levels and sex were the predominant variables associated with the variations in the HVC transcriptomes. The comparison of natural singing with testosterone-induced singing in canaries of the same sex revealed considerable differences in the HVC transcriptomes. Strong transcriptional changes in the HVC were detected during the transition from non-singing to singing in canaries of both sexes. Although the sex-specific genes of singing females shared little resemblance with those of males, our analysis showed potential functional convergences. Thus, male and female songbirds achieve comparable singing behaviours with sex-specific transcriptomes.
Collapse
Affiliation(s)
- Meng-Ching Ko
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
5
|
Abstract
Nanomedicine has demonstrated substantial potential to improve the quality and efficacy of healthcare systems. Although the promise of nanomedicine to transform conventional medicine is evident, significant numbers of therapeutic nanomedicine products have failed in clinical trials. Most studies in nanomedicine have overlooked several important factors, including the significance of sex differences at various physiological levels. This report attempts to highlight the importance of sex in nanomedicine at cellular and molecular level. A more thorough consideration of sex physiology, among other critical variations (e.g., health status of individuals), would enable researchers to design and develop safer and more-efficient sex-specific diagnostic and therapeutic nanomedicine products.
Collapse
|
6
|
Non-aortic cardiovascular disease in Marfan syndrome: a nationwide epidemiological study. Clin Res Cardiol 2021; 110:1106-1115. [PMID: 33885997 DOI: 10.1007/s00392-021-01858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Studies indicate that other cardiovascular problems than aortic disease are a burden for patients with Marfan syndrome (MFS). The aim of the study was to assess the extent of this issue. METHODS A registry-based population study of patients with a Ghent II verified MFS diagnosis. Each patient was matched with up to 100 controls on age and sex. From the Danish healthcare system, we identified 407 MFS patients (from 1977 to 2014) and their cardiovascular events and compared them with those in 40,700 controls. Total follow-up time was 16,439 person years. RESULTS Mitral valve disease was significantly more common in MFS [HR: 58.9 (CI 38.1-91.1)] and happened earlier and more often in women than men with MFS [age at first registration: 22 vs. 38 years, HR: 2.1 (CI 1.0-4.4)]. Heart failure/cardiomyopathy was also more common in MFS [HR: 8.7 (CI 5.7-13.4)] and men were more affected than women, and at younger age [39 vs. 64 years, HR: 0.18 (CI 0.06-0.55)]. In all cases, atrioventricular block [HR: 4.9 (1.5-15.6)] was related to heart surgery. Supraventricular [HR: 9.7 (CI 7.5-12.7)] and ventricular tachycardia [HR: 7.7 (CI 4.2-14.3)] also occurred more often than in the control group. The risk of sudden cardiac death was increased [HR: 8.3 (CI 3.8-18.0)] but the etiology was unclear due to lack of autopsies. CONCLUSION Non-aortic cardiovascular disease in patients with MFS is exceptionally prevalent and the range of diseases varies between women and men. Physicians caring for MFS patients must be aware of this large spectrum of cardiovascular diseases.
Collapse
|
7
|
Genolet O, Monaco AA, Dunkel I, Boettcher M, Schulz EG. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 2021; 22:110. [PMID: 33863351 PMCID: PMC8051100 DOI: 10.1186/s13059-021-02321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna A Monaco
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Present address: BIMSB, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
8
|
Rodríguez Lorenzo JL, Hubinský M, Vyskot B, Hobza R. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110528. [PMID: 32900432 DOI: 10.1016/j.plantsci.2020.110528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Silene latifolia is a model organism to study evolutionary young heteromorphic sex chromosome evolution in plants. Previous research indicates a Y-allele gene degeneration and a dosage compensation system already operating. Here, we propose an epigenetic approach based on analysis of several histone post-translational modifications (PTMs) to find the first epigenetic hints of the X:Y sex chromosome system regulation in S. latifolia. Through chromatin immunoprecipitation we interrogated six genes from X and Y alleles. Several histone PTMS linked to DNA methylation and transcriptional repression (H3K27me3, H3K23me, H3K9me2 and H3K9me3) and to transcriptional activation (H3K4me3 and H4K5, 8, 12, 16ac) were used. DNA enrichment (Immunoprecipitated DNA/input DNA) was analyzed and showed three main results: (i) promoters of the Y allele are associated with heterochromatin marks, (ii) promoters of the X allele in males are associated with activation of transcription marks and finally, (iii) promoters of X alleles in females are associated with active and repressive marks. Our finding indicates a transcription activation of X allele and transcription repression of Y allele in males. In females we found a possible differential regulation (up X1, down X2) of each female X allele. These results agree with the mammal-like epigenetic dosage compensation regulation.
Collapse
Affiliation(s)
- José Luis Rodríguez Lorenzo
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Marcel Hubinský
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Roman Hobza
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
9
|
Zhang J, Chen Y, Gao M, Wang Z, Liu R, Xia T, Liu S. Silver Nanoparticles Compromise Female Embryonic Stem Cell Differentiation through Disturbing X Chromosome Inactivation. ACS NANO 2019; 13:2050-2061. [PMID: 30650303 DOI: 10.1021/acsnano.8b08604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) has raised substantial health risks to human beings. Despite a wealth of progress on toxicity studies, the understanding of the adverse effects on fetuses, embryos, and early stage cells is still rather limited, particularly under low-dose exposure settings. Moreover, nearly all previous studies ascribed AgNP-induced toxic effects to oxidative stress. Differently, we here unearthed a mechanism, namely, interruption of X chromosome inactivation (XCI) in female mouse embryonic stem cells (mESCs). Albeit with no observable cytotoxicity, significant differentiation retardation was found in female mESCs upon low-dose AgNP exposure. Mechanistic investigations uncovered expedited inactivation for the inactive X chromosome (Xi) and attenuated maintenance of the active X chromosome (Xa) state during mESC differentiation upon the challenge of low-dose AgNPs, indicative of disordered XCI. Thereby, a few X-linked genes (which are closely involved in orchestrating ESC differentiation) were found to be repressed, partially attributable to reinforced enrichment of histone modification ( e. g., histone 3 lysine 27 trimethylation, H3K27me3) on their promoter regions, as the result of disordered XCI. In stark contrast to female mESCs, no impairment of differentiation was observed in male mESCs under low-dose AgNP exposure. All considered, our data unearthed that AgNPs at low concentrations compromised the differentiation program of female mESCs through disturbing XCI. Thus, this work would provide a model for the type of studies necessary to advance the understandings on AgNP-induced developmental toxicity.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhe Wang
- School of Public Health , Xinxiang Medical University , Xinxiang , Henan Province 453003 , China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- Division of NanoMedicine, Department of Medicine , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
10
|
Song J, Janiszewski A, De Geest N, Vanheer L, Talon I, El Bakkali M, Oh T, Pasque V. X-Chromosome Dosage Modulates Multiple Molecular and Cellular Properties of Mouse Pluripotent Stem Cells Independently of Global DNA Methylation Levels. Stem Cell Reports 2019; 12:333-350. [PMID: 30639215 PMCID: PMC6372905 DOI: 10.1016/j.stemcr.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023] Open
Abstract
Reprogramming female mouse somatic cells into induced pluripotent stem cells (iPSCs) leads to X-chromosome reactivation. The extent to which increased X-chromosome dosage (X-dosage) in female iPSCs compared with male iPSCs leads to differences in the properties of iPSCs is still unclear. We show that chromatin accessibility in mouse iPSCs is modulated by X-dosage. Specific sets of transcriptional regulator motifs are enriched in chromatin with increased accessibility in XX or XY iPSCs. The transcriptome, growth and pluripotency exit are also modulated by X-dosage in iPSCs. To understand how increased X-dosage modulates the properties of mouse pluripotent stem cells, we used heterozygous deletions of the X-linked gene Dusp9. We show that X-dosage regulates the transcriptome, open chromatin landscape, growth, and pluripotency exit largely independently of global DNA methylation. Our results provide insights into how gene dosage modulates the epigenetic and genetic mechanisms that regulate cell identity. X-chromosome dosage modulates the pluripotent chromatin accessibility landscape Increased X-chromosome dosage slows down growth Dusp9 heterozygous female ESCs display pluripotency exit delay
Collapse
Affiliation(s)
- Juan Song
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium.
| | - Adrian Janiszewski
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Natalie De Geest
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Lotte Vanheer
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Irene Talon
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Mouna El Bakkali
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Taeho Oh
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
12
|
Heard E, Brockdorff N. Preface. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0353. [DOI: 10.1098/rstb.2016.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|