1
|
Shi J, Kong L, Wang N, Li Z, Zhao C, Chen C. Strong Bioadhesives from Helical Polypeptides. ACS Macro Lett 2025; 14:299-305. [PMID: 40098459 DOI: 10.1021/acsmacrolett.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bioadhesives have emerged as versatile and powerful tools for tissue repair and integration with biomedical devices, offering a wide range of applications that have captured significant clinical and scientific interest. Synthetic polypeptide adhesives are particularly promising candidates for bioadhesives, but often face limitations in adhesive strength. In this study, inspired by marine adhesive proteins, the secondary structure and hydrophobic-hydrophilic balance of polypeptides were precisely regulated to transform the polyelectrolyte to a strong adhesive. The resulting polypeptide adhesive demonstrated an adhesive strength exceeding 1.0 MPa, more than 10× higher than that of the previously reported synthetic polypeptide adhesive. The cohesion and adhesion of polypeptide adhesive can be optimized by adjusting the content of the secondary structure and hydrophobic residue ratios. More helices in polypeptides enhance the interactions between the polypeptide backbone and side chains as well as the interactions between polypeptides and substrates. In addition, these polypeptide adhesives exhibit excellent tolerance to strong acids or alkalis, remarkable adhesion to variable materials and tissues, and an impressive sealing performance.
Collapse
Affiliation(s)
- Jiangyan Shi
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Liufen Kong
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Wang
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Zhimin Li
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
3
|
Ja'afaru SC, Uzairu A, Hossain S, Ullah MH, Sallau MS, Ndukwe GI, Ibrahim MT, Bayil I, Moin AT. Computer-aided discovery of novel SmDHODH inhibitors for schistosomiasis therapy: Ligand-based drug design, molecular docking, molecular dynamic simulations, drug-likeness, and ADMET studies. PLoS Negl Trop Dis 2024; 18:e0012453. [PMID: 39264908 PMCID: PMC11392272 DOI: 10.1371/journal.pntd.0012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
Schistosomiasis, also known as bilharzia or snail fever, is a tropical parasitic disease resulting from flatworms of the Schistosoma genus. This often overlooked disease has significant impacts in affected regions, causing enduring morbidity, hindering child development, reducing productivity, and creating economic burdens. Praziquantel (PZQ) is currently the only treatment option for schistosomiasis. Given the potential rise of drug resistance and the limited treatment choices available, there is a need to develop more effective inhibitors for this neglected tropical disease (NTD). In view of this, quantitative structure-activity relationship studies (QSAR), molecular docking, molecular dynamics simulations, drug-likeness, and ADMET predictions were applied to 31 inhibitors of Schistosoma mansoni Dihydroorotate dehydrogenase (SmDHODH). The designed QSAR model demonstrated robust statistical parameters including an R2 of 0.911, R2adj of 0.890, Q2cv of 0.686, R2pred of 0.807, and cR2p of 0.825, confirming its robustness. Compound 26, identified as the most active derivative, emerged as a lead candidate for new potential inhibitors through ligand-based drug design. Subsequently, 12 novel compounds (26A-26L) were designed with enhanced inhibition activity and binding affinity. Molecular docking studies revealed strong and stable interactions, including hydrogen bonding and hydrophobic interactions, between the designed compounds and the target receptor. Molecular dynamics simulations over 100 nanoseconds and MM-PBSA free binding energy (ΔGbind) calculations validated the stability of the two best-designed molecules (26A and 26L). Furthermore, drug-likeness and ADMET prediction analyses affirmed the potential of these designed compounds, suggesting their promise as innovative agents for treating schistosomiasis.
Collapse
Affiliation(s)
- Saudatu Chinade Ja'afaru
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Aliko Dangote University of Science and Technology, Wudil, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Sharika Hossain
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammad Hamid Ullah
- Department of Pharmacy, University of Cyberjaya Medical Science, Cyberjaya Selangor, Malaysia
| | | | | | | | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
4
|
Ren H, Chen H, Kang Y, Liu W, Liu Y, Tao F, Miao S, Zhang Y, Liu Q, Dong M, Liu Y, Liu B, Yang P. Non-fibril amyloid aggregation at the air/water interface: self-adaptive pathway resulting in a 2D Janus nanofilm. Chem Sci 2024; 15:8946-8958. [PMID: 38873054 PMCID: PMC11168098 DOI: 10.1039/d4sc00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/27/2024] [Indexed: 06/15/2024] Open
Abstract
The amyloid states of proteins are implicated in several neurodegenerative diseases and bioadhesion processes. However, the classical amyloid fibrillization mechanism fails to adequately explain the formation of polymorphic aggregates and their adhesion to various surfaces. Herein, we report a non-fibril amyloid aggregation pathway, with disulfide-bond-reduced lysozyme (R-Lyz) as a model protein under quasi-physiological conditions. Very different from classical fibrillization, this pathway begins with the air-water interface (AWI) accelerated oligomerization of unfolded full-length protein, resulting in unique plate-like oligomers with self-adaptive ability, which can adjust their conformations to match various interfaces such as the asymmetric AWI and amyloid-protein film surface. The pathway enables a stepwise packing of the plate-like oligomers into a 2D Janus nanofilm, exhibiting a divergent distribution of hydrophilic/hydrophobic residues on opposite sides of the nanofilm. The resulting Janus nanofilm possesses a top-level Young's modulus (8.3 ± 0.6 GPa) among amyloid-based materials and exhibits adhesive strength two times higher (145 ± 81 kPa) than that of barnacle cement. Furthermore, we found that such an interface-directed pathway exists in several amyloidogenic proteins with a similar self-adaptive 2D-aggregation process, including bovine serum albumin, insulin, fibrinogen, hemoglobin, lactoferrin, and ovalbumin. Thus, our findings on the non-fibril self-adaptive mechanism for amyloid aggregation may shed light on polymorphic amyloid assembly and their adhesions through an alternative pathway.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Huan Chen
- First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an 710061 China
| | - Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Qian Liu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus C Denmark
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Bing Liu
- First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an 710061 China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
5
|
Abstract
The strategy of robust adhesion employed by barnacles renders them fascinating biomimetic candidates for developing novel wet adhesives. Particularly, barnacle cement protein 19k (cp19k) has been speculated to be the key adhesive protein establishing the priming layer in the initial barnacle cement construction. In this work, we systematically studied the sequence design rationale of cp19k by designing adhesive peptides inspired by the low-complexity STGA-rich and the charged segments of cp19k. Combining structure analysis and the adhesion performance test, we found that cp19k-inspired adhesive peptides possess excellent disparate adhesion strategies for both hydrophilic mica and hydrophobic self-assembled monolayer surfaces. Specifically, the low-complexity STGA-rich segment offers great structure flexibility for surface adhesion, while the hydrophobic and charged residues can contribute to the adhesion of the peptides on hydrophobic and charged surfaces. The adaptive adhesion strategy identified in this work broadens our understanding of barnacle adhesion mechanisms and offers valuable insights for designing advanced wet adhesives with exceptional performance on various types of surfaces.
Collapse
Affiliation(s)
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Hur S, Méthivier C, Wilson A, Salmain M, Boujday S, Miserez A. Biomineralization in Barnacle Base Plate in Association with Adhesive Cement Protein. ACS APPLIED BIO MATERIALS 2023; 6:3423-3432. [PMID: 37078387 DOI: 10.1021/acsabm.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of β-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Collapse
Affiliation(s)
- Sunyoung Hur
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Axel Wilson
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, 4 place Jussieu, 75005 Paris, France
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551
| |
Collapse
|
7
|
Ravi P, Kumaresan S, Danaraj J, Uthirakrishnan U, Pandian S, Sivaramakrishnan R, Prakasam SB, Pugazhendhi A. Anti-fouling potential and in-silico analysis of carotenoid and fatty acids from Rauvolfia tetraphylla L. ENVIRONMENTAL RESEARCH 2023; 231:116158. [PMID: 37201709 DOI: 10.1016/j.envres.2023.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Study investigated the antifouling potential ofRauvolfia tetraphyllaL. fruit, leaf and stem extracts against the marine fouling organisms throughin-vitroand in-silicoapproach. Methanolic crude extract of R. tetraphylla L.leaf exhibited maximum antibacterial potential against six fouling organisms isolated from Parangipettai coast and was further taken up for column fractionation. Twenty-four fractions were obtained, among which five fractions showed inhibitory efficiency against microfoulers of Bacillus megaterium. The active compounds present in the bioactive fraction were identified by FTIR, GC-MS and NMR (13C; 1H). The bioactive compounds that exhibited maximum antifouling activity were identified as Lycopersene (80%), Hexadecanoic acid; 1, 2-Benzenedicarboxylic acid, dioctyl ester; Heptadecene - (8) - carbonic acid - (1) and Oleic acid. Molecular docking studies of the potent anti-fouling compounds Lycopersene, Hexadecanoic acid, 1, 2-Benzenedicarboxylic acid, dioctyl ester and Oleic acid showed the binding energy of 6.6, - 3.8, -5.3 and -5.9 (Kcal/mol) and hence these compounds will act as a potential biocide to control the aquatic foulers. Moreover, further studies need to carry out in terms of toxicity, field assessment and clinical trial in order to take these biocides for a patent.
Collapse
Affiliation(s)
- Prasanth Ravi
- Environmental Science Laboratory, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, Chidambaram, Cuddalore District, Tamilnadu, India
| | - Subasankari Kumaresan
- Department of Biotechnology, Dhanalakshmi Srinivasan Arts and Science College for Women (Affiliated to Bharadhidasan University), Trichy, Tamil Nadu, India
| | - Jeyapragash Danaraj
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science and Technology Cell (Marine Biotechnological Studies), Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Ushani Uthirakrishnan
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, 603 308, Tamil Nadu, India
| | - Sureshkumar Pandian
- Environmental Science Laboratory, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608502, Chidambaram, Cuddalore District, Tamilnadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sebastin Belcia Prakasam
- School of Energy and Environmental Science, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali 140103, India.
| |
Collapse
|
8
|
Zhang Y, Liu Y, Liu Y, Zuo P, Miao S, Hu B, Kang Y, Liu W, Yang Q, Ren H, Yang P. α-Helix-Mediated Protein Adhesion. J Am Chem Soc 2023; 145:17125-17135. [PMID: 37505921 DOI: 10.1021/jacs.3c03581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Proteins have been adopted by natural living organisms to create robust bioadhesive materials, such as biofilms and amyloid plaques formed in microbes and barnacles. In these cases, β-sheet stacking is recognized as a key feature that is closely related to the interfacial adhesion of proteins. Herein, we challenge this well-known recognition by proposing an α-helix-mediated interfacial adhesion model for proteins. By using bovine serum albumin (BSA) as a model protein, it was discovered that the reduction of disulfide bonds in BSA results in random coils from unfolded BSA dragging α-helices to gather at the solid/liquid interface (SLI). The hydrophobic residues in the α-helix then expose and break through the hydration layer of the SLI, followed by the random deposition of hydrophilic and hydrophobic residues to achieve interfacial adhesion. As a result, the first assembled layer is enriched in the α-helix secondary structure, which is then strengthened by intermolecular disulfide bonds and further initiates stepwise layering protein assembly. In this process, β-sheet stacking is transformed from the α-helix in a gradually evolving manner. This finding thus indicates a valuable clue that β-sheet-featuring amyloid may form after the interfacial adhesion of proteins. Furthermore, the finding of the α-helix-mediated interfacial adhesion model of proteins affords a unique strategy to prepare protein nanofilms with a well-defined layer number, presenting robust and modulable adhesion on various substrates and exhibiting good resistance to acid, alkali, organic solvent, ultrasonic, and adhesive tape peeling.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping Zuo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qingmin Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, Zhao J, Li Y, Guo W, Liu T, Qu W. Recent advances in biomimetic hemostatic materials. Mater Today Bio 2023; 19:100592. [PMID: 36936399 PMCID: PMC10020683 DOI: 10.1016/j.mtbio.2023.100592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Although the past decade has witnessed unprecedented medical advances, achieving rapid and effective hemostasis remains challenging. Uncontrolled bleeding and wound infections continue to plague healthcare providers, increasing the risk of death. Various types of hemostatic materials are nowadays used during clinical practice but have many limitations, including poor biocompatibility, toxicity and biodegradability. Recently, there has been a burgeoning interest in organisms that stick to objects or produce sticky substances. Indeed, applying biological adhesion properties to hemostatic materials remains an interesting approach. This paper reviews the biological behavior, bionics, and mechanisms related to hemostasis. Furthermore, this paper covers the benefits, challenges and prospects of biomimetic hemostatic materials.
Collapse
Affiliation(s)
- Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, PR China
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, PR China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
- Corresponding author.
| |
Collapse
|
10
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
11
|
Hydration and antibiofouling of TMAO-derived zwitterionic polymers surfaces studied with atomistic molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Li B, Song J, Mao T, Zeng L, Ye Z, Hu B. An essential role of disulfide bonds for the hierarchical self-assembly and underwater affinity of CP20-derived peptides. Front Bioeng Biotechnol 2022; 10:998194. [DOI: 10.3389/fbioe.2022.998194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Barnacles are typical fouling organisms strongly adhere to immersed solid substrates by secreting proteinaceous adhesives called cement proteins (CPs). The self-assembly of the CPs forms a permanently bonded layer that binds barnacles to foreign surfaces. However, it is difficult to determine their natural structure and describe their self-assembly properties due to the abundance of cysteines in whole-length CP20. A putative functional motif of Balanus albicostatus CP20 (BalCP20) was identified to present distinctive self-assembly and wet-binding characteristics. Atomic-force microscopy (AFM) and transmission electron microscope (TEM) investigations showed that wildtype BalCP20-P3 formed grain-like spindles, which assembled into fractal-like structures like ears of wheat. SDS-PAGE, AFM, and LSCM showed that DTT treatment opened up disulfide bonds between cysteines and disrupted fractal-like structures. Additionally, these morphologies were abolished when one of the BalCP20-P3 four cysteines was mutated by alanine. Circular dichroism (CD) results suggested that the morphological diversity among BalCP20-P3 and its mutations was related to the proportion of α-helices. Finally, quartz crystal microbalance with dissipation (QCM-D) detected that BalCP20-P3 and its mutations with diverse self-assemblies occupied different affinities. The above results demonstrated that cysteines and disulfide bonds played a crucial role in the self-assembly and wet binding of BalCP20-P3. The work provides new ideas for the underwater bonding of BalCP20 and developing new bionic underwater adhesives.
Collapse
|
13
|
Xu Z, Liu Z, Zhang C, Xu D. Advance in barnacle cement with high underwater adhesion. J Appl Polym Sci 2022. [DOI: 10.1002/app.52894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhenzhen Xu
- Beijing Institute of Basic Medical Sciences Beijing China
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences Hebei University Baoding China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences Beijing China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences Beijing China
| |
Collapse
|
14
|
Liang C, Bi X, Gan K, Wu J, He G, Xue B, Ye Z, Cao Y, Hu B. Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules 2022; 23:2019-2030. [PMID: 35482604 DOI: 10.1021/acs.biomac.2c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides capable of self-assembling into different supramolecular structures have potential applications in a variety of areas. The biomimetic molecular design offers an important avenue to discover novel self-assembling peptides. Despite this, a lot of biomimetic self-assembling peptides have been reported so far; to continually expand the scope of peptide self-assembly, it is necessary to find out more novel self-assembling peptides. Barnacle cp19k, a key underwater adhesive protein, shows special block copolymer-like characteristics and diversified self-assembly properties, providing an ideal template for biomimetic peptide design. In this study, inspired by Balanus albicostatus cp19k (Balcp19k), we rationally designed nine biomimetic peptides (P1-P9) and systematically studied their self-assembly behaviors for the first time. Combining microscale morphology observations and secondary structure analyses, we found that multiple biomimetic peptides derived from the central region and the C-terminus of Balcp19k form distinct supramolecular structures via different self-assembly mechanisms under acidic conditions. Specifically, P9 self-assembles into typical amyloid fibers. P7, which resembles ionic self-complementary peptides by containing nonstrictly alternating hydrophobic and charged amino acids, self-assembles into uniform, discrete nanofibers. P6 with amphipathic features forms twisted nanoribbons. Most interestingly, P4 self-assembles to form helical nanofibers and novel ring-shaped microstructures, showing unique self-assembly behaviors. Apart from their self-assembly properties, these peptides showed good cytocompatibility and demonstrated promising applications in biomedical areas. Our results expanded the repertoire of self-assembling peptides and provided new insights into the structure-function relationship of barnacle cp19k.
Collapse
Affiliation(s)
- Chao Liang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Xiangyun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kesheng Gan
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Jizhe Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Guangxiao He
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zonghuang Ye
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Biru Hu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
15
|
Gan K, Liang C, Bi X, Wu J, Ye Z, Wu W, Hu B. Adhesive Materials Inspired by Barnacle Underwater Adhesion: Biological Principles and Biomimetic Designs. Front Bioeng Biotechnol 2022; 10:870445. [PMID: 35573228 PMCID: PMC9097139 DOI: 10.3389/fbioe.2022.870445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Wet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g., mussels, sandcastle worms, and barnacles) have evolved into wet adhesion specialists with excellent underwater adhesion abilities, and mimicking their adhesion principles to engineer artificial adhesive materials offers an important avenue to address the wet adhesion issue. The crustacean barnacle secretes a proteinaceous adhesive called barnacle cement, with which they firmly attach their bodies to almost any substrate underwater. Owing to the unique chemical composition, structural property, and adhesion mechanism, barnacle cement has attracted widespread research interest as a novel model for designing biomimetic adhesive materials, with significant progress being made. To further boost the development of barnacle cement-inspired adhesive materials (BCIAMs), it is necessary to systematically summarize their design strategies and research advances. However, no relevant reviews have been published yet. In this context, we presented a systematic review for the first time. First, we introduced the underwater adhesion principles of natural barnacle cement, which lay the basis for the design of BCIAMs. Subsequently, we classified the BCIAMs into three major categories according to the different design strategies and summarized their research advances in great detail. Finally, we discussed the research challenge and future trends of this field. We believe that this review can not only improve our understanding of the molecular mechanism of barnacle underwater adhesion but also accelerate the development of barnacle-inspired wet adhesion technology.
Collapse
Affiliation(s)
- Kesheng Gan
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Chao Liang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Xiangyun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jizhe Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zonghuang Ye
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Wenjian Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Biru Hu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
16
|
Wieczorek E, Ożyhar A. Transthyretin: From Structural Stability to Osteoarticular and Cardiovascular Diseases. Cells 2021; 10:1768. [PMID: 34359938 PMCID: PMC8307983 DOI: 10.3390/cells10071768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
17
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
18
|
Aldred N. Transdisciplinary approaches to the study of adhesion and adhesives in biological systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190191. [PMID: 31495317 DOI: 10.1098/rstb.2019.0191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|