1
|
Valdebenito-Oyarzo G, Martínez-Molina MP, Soto-Icaza P, Zamorano F, Figueroa-Vargas A, Larraín-Valenzuela J, Stecher X, Salinas C, Bastin J, Valero-Cabré A, Polania R, Billeke P. The parietal cortex has a causal role in ambiguity computations in humans. PLoS Biol 2024; 22:e3002452. [PMID: 38198502 PMCID: PMC10824459 DOI: 10.1371/journal.pbio.3002452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.
Collapse
Affiliation(s)
- Gabriela Valdebenito-Oyarzo
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Campus Los Leones, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Josefina Larraín-Valenzuela
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Ximena Stecher
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - César Salinas
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Antoni Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, Massachusetts, United States of America
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
2
|
Wild skuas can use acoustic cues to locate hidden food. Anim Cogn 2022; 25:1357-1363. [PMID: 35292871 DOI: 10.1007/s10071-022-01611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
Among animals, the visual acuity of several predatory bird species is probably the most outstanding. This, and the ease with which visually based tasks are administered, has led researchers to predominantly use the visual modality when studying avian cognition. Some wild skua populations routinely use acoustic cues emitted by their prey during foraging. In this study, we thus assessed whether this species was able to locate hidden food using acoustic cues alone (training phase). During the subsequent test phase, we investigated the capacity of successful individuals to choose the correct baited container in four conditions: (i) baited (shaking the baited container), (ii) full information (shaking both containers), (iii) exclusion (shaking the empty container), and (iv) control (shaking neither container). Four out of ten subjects succeeded in locating the baited container in the training phase. During the test phase, most subjects chose the baited container significantly more than the empty container in the baited and full information condition, while their performance was at chance level in the control condition. When no sound emanated from the empty container in the exclusion condition, one out of four skuas chose the baited container with more accuracy than predicted by chance. As this bird chose correctly on the first trial and during the first five trials, its performance is unlikely due to learning processes (learning to exclude the empty container). Although further tests are necessary to draw firm conclusions, our results open the way for assessing further this species' reasoning abilities in the wild.
Collapse
|
3
|
Bourgeois-Gironde S, Addessi E, Boraud T. Economic behaviours among non-human primates. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190676. [PMID: 33423625 PMCID: PMC7815433 DOI: 10.1098/rstb.2019.0676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Do we have any valid reasons to affirm that non-human primates display economic behaviour in a sufficiently rich and precise sense of the phrase? To address this question, we have to develop a set of criteria to assess the vast array of experimental studies and field observations on individual cognitive and behavioural competences as well as the collective organization of non-human primates. We review a sample of these studies and assess how they answer to the following four main challenges. (i) Do we see any economic organization or institutions emerge among groups of non-human primates? (ii) Are the cognitive abilities, and often biases, that have been evidenced as underlying typical economic decision-making among humans, also present among non-human primates? (iii) Can we draw positive lessons from performance comparisons among primate species, humans and non-humans but also across non-human primate species, as elicited by canonical game-theoretical experimental paradigms, especially as far as economic cooperation and coordination are concerned? And (iv) in which way should we improve models and paradigms to obtain more ecological data and conclusions? Articles discussed in this paper most often bring about positive answers and promising perspectives to support the existence and prevalence of economic behaviours among non-human primates. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
- Sacha Bourgeois-Gironde
- Institut Jean Nicod, Département d’études cognitives, ENS, EHESS, CNRS, PSLUniversity, France
| | - Elsa Addessi
- Unità di Primatologia Cognitiva e Centro Primati, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, 00197 Rome, Italy
| | - Thomas Boraud
- CNRS, UMR 5293, IMN, 33000 Bordeaux, France
- University of Bordeaux, UMR 5293, IMN, 33000, Bordeaux, France
- CHU de Bordeaux, IMN Clinique, 33000 Bordeaux, France
| |
Collapse
|
4
|
Exclusion in the field: wild brown skuas find hidden food in the absence of visual information. Anim Cogn 2021; 24:867-876. [PMID: 33594576 DOI: 10.1007/s10071-021-01486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Inferential reasoning by exclusion allows responding adaptively to various environmental stimuli when confronted with inconsistent or partial information. In the experimental context, this mechanism involves selecting correctly between an empty option and a potentially rewarded one. Recently, the increasing reports of this capacity in phylogenetically distant species have led to the assumption that reasoning by exclusion is the result of convergent evolution. Within one largely unstudied avian order, i.e. the Charadriiformes, brown skuas (Catharacta antarctica ssp lonnbergi) are highly flexible and opportunistic predators. Behavioural flexibility, along with specific aspects of skuas' feeding ecology, may act as influencing factors in their ability to show exclusion performance. Our study aims to test whether skuas are able to choose by exclusion in a visual two-way object-choice task. Twenty-six wild birds were presented with two opaque cups, one covering a food reward. Three conditions were used: 'full information' (showing the content of both cups), 'exclusion' (showing the content of the empty cup), and 'control' (not showing any content). Skuas preferentially selected the rewarded cup in the full information and exclusion condition. The use of olfactory cues was excluded by results in the control condition. Our study opens new field investigations for testing further the cognition of this predatory seabird.
Collapse
|