1
|
Heim F, Scharff C, Fisher SE, Riebel K, Ten Cate C. Auditory discrimination learning and acoustic cue weighing in female zebra finches with localized FoxP1 knockdowns. J Neurophysiol 2024; 131:950-963. [PMID: 38629163 DOI: 10.1152/jn.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.
Collapse
Affiliation(s)
- Fabian Heim
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics,Nijmegen, The Netherlands
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics,Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Carel Ten Cate
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
2
|
Alam D, Zia F, Roberts TF. The hidden fitness of the male zebra finch courtship song. Nature 2024; 628:117-121. [PMID: 38509376 PMCID: PMC11410162 DOI: 10.1038/s41586-024-07207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Vocal learning in songbirds is thought to have evolved through sexual selection, with female preference driving males to develop large and varied song repertoires1-3. However, many songbird species learn only a single song in their lifetime4. How sexual selection drives the evolution of single-song repertoires is not known. Here, by applying dimensionality-reduction techniques to the singing behaviour of zebra finches (Taeniopygia guttata), we show that syllable spread in low-dimensional feature space explains how single songs function as honest indicators of fitness. We find that this Gestalt measure of behaviour captures the spectrotemporal distinctiveness of song syllables in zebra finches; that females strongly prefer songs that occupy more latent space; and that matching path lengths in low-dimensional space is difficult for young males. Our findings clarify how simple vocal repertoires may have evolved in songbirds and indicate divergent strategies for how sexual selection can shape vocal learning.
Collapse
Affiliation(s)
- Danyal Alam
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fayha Zia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Lamoni L, Garland EC, Allen JA, Coxon J, Noad MJ, Rendell L. Variability in humpback whale songs reveals how individuals can be distinctive when sharing a complex vocal display. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2238. [PMID: 37092914 DOI: 10.1121/10.0017602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/25/2023] [Indexed: 05/03/2023]
Abstract
Individually distinctive acoustic signals in animal vocal communication are taxonomically widespread, however, the investigation of these signal types in marine mammals has focused only on a few species. Humpback whale songs are a stereotyped, hierarchically structured vocal display performed by males, and hence thought to be sexually selected. Within a population, whales conform to a common version of the song despite the song constantly evolving. While humpback songs have been studied extensively at the population level, individual level variation has been rarely described, with inconclusive results. Here, we quantified inter- and intra-individual variability at different levels in the song hierarchy using songs from 25 singers across two song types from the eastern Australian population song of 2002 (12 singers), and the revolutionary song introduced in 2003 (13 singers). Inter-individual variability was found heterogeneously across all hierarchical levels of the song structure. In addition, distinct and individually specific patterns of song production were consistently recorded across song levels, with clear structural differences between the two song types. These results suggest that within the constraints of song conformity, males can produce individually distinctive patterns that could function as an advertisement to females to convey individual qualities.
Collapse
Affiliation(s)
- Luca Lamoni
- Centre for Social Learning and Cognitive Evolution/Sea Mammal Research Unit, School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | - Ellen C Garland
- Centre for Social Learning and Cognitive Evolution/Sea Mammal Research Unit, School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | - Jenny A Allen
- Cetacean Ecology and Acoustics Laboratories, School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Jennifer Coxon
- Centre for Social Learning and Cognitive Evolution/Sea Mammal Research Unit, School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | - Michael J Noad
- Cetacean Ecology and Acoustics Laboratories, School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Luke Rendell
- Centre for Social Learning and Cognitive Evolution/Sea Mammal Research Unit, School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| |
Collapse
|
4
|
Zebra finches (Taeniopygia guttata) demonstrate cognitive flexibility in using phonology and sequence of syllables in auditory discrimination. Anim Cogn 2023:10.1007/s10071-023-01763-4. [PMID: 36934374 DOI: 10.1007/s10071-023-01763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/20/2023]
Abstract
Zebra finches rely mainly on syllable phonology rather than on syllable sequence when they discriminate between two songs. However, they can also learn to discriminate two strings containing the same set of syllables by their sequence. How learning about the phonological characteristics of syllables and their sequence relate to each other and to the composition of the stimuli is still an open question. We compared whether and how the zebra finches' relative sensitivity for syllable phonology and syllable sequence depends on the differences between syllable strings. Two groups of zebra finches were trained in a Go-Left/Go-Right task to discriminate either between two strings in which each string contained a unique set of song syllables ('Different-syllables group') or two strings in which both strings contained the same set of syllables, but in a different sequential order ('Same-syllables group'). We assessed to what extent the birds in the two experimental groups attend to the spectral characteristics and the sequence of the syllables by measuring the responses to test strings consisting of spectral modifications or sequence changes. Our results showed no difference in the number of trials needed to discriminate strings consisting of either different or identical sets of syllables. Both experimental groups attended to changes in spectral features in a similar way, but the group for which both training strings consisted of the same set of syllables responded more strongly to changes in sequence than the group for which the training strings consisted of different sets of syllables. This outcome suggests the presence of an additional learning process to learn about syllable sequence when learning about syllable phonology is not sufficient to discriminate two strings. Our study thus demonstrates that the relative importance of syllable phonology and sequence depends on how these features vary among stimuli. This indicates cognitive flexibility in the acoustic features that songbirds might use in their song recognition.
Collapse
|
5
|
Mol C, Bolhuis JJ, Moorman S. Vocal learning in songbirds: the role of syllable order in song recognition. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200248. [PMID: 34482724 PMCID: PMC8419574 DOI: 10.1098/rstb.2020.0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2021] [Indexed: 12/03/2022] Open
Abstract
Songbird vocal learning has interesting behavioural and neural parallels with speech acquisition in human infants. Zebra finch males sing one unique song that they imitate from conspecific males, and both sexes learn to recognize their father's song. Although males copy the stereotyped syllable sequence of their father's song, the role of sequential information in recognition remains unclear. Here, we investigated father's song recognition after changing the serial order of syllables (switching the middle syllables, first and last syllables, or playing all syllables in inverse order). Behavioural approach and call responses of adult male and female zebra finches to their father's versus unfamiliar songs in playback tests demonstrated significant recognition of father's song with all syllable-order manipulations. We then measured behavioural responses to normal versus inversed-order father's song. In line with our first results, the subjects did not differentiate between the two. Interestingly, when males' strength of song learning was taken into account, we found a significant correlation between song imitation scores and the approach responses to the father's song. These findings suggest that syllable sequence is not essential for recognition of father's song in zebra finches, but that it does affect responsiveness of males in proportion to the strength of vocal learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Carien Mol
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Johan J. Bolhuis
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sanne Moorman
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
6
|
Vernes SC, Janik VM, Fitch WT, Slater PJB. Vocal learning in animals and humans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200234. [PMID: 34482718 PMCID: PMC8422595 DOI: 10.1098/rstb.2020.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sonja C Vernes
- School of Biology, The University of St Andrews, St Andrews, UK.,Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vincent M Janik
- School of Biology, The University of St Andrews, St Andrews, UK
| | | | | |
Collapse
|