1
|
Smeltz SML, Deimeke MJ, Sahu PK, Montenegro C, Stenstrom KH, Starenchak I, Rennie V, Ebrahim IM, Jones JA, Sturdy CB. Individual vocal identity may be obscured following colony assembly in captive black-capped chickadees. Behav Processes 2025; 225:105151. [PMID: 39880221 DOI: 10.1016/j.beproc.2025.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Black-capped chickadee (Poecile atricapillus) vocalisations remain plastic throughout their lifespans. Although fledglings employ vocal plasticity to refine their vocalisations through the use of tutor mimicry, adults employ vocal plasticity to create unique population dialects. Vocal convergence is one mechanism by which flockmates' vocalisations become increasingly similar to each other and distinct from the calls of other flocks. Chick-a-dee call plasticity via vocal convergence has been observed in wild and group aviary-housed laboratory chickadee flocks. Our study aimed to answer whether individually-housed laboratory chickadee colonies possess unique vocal dialects similar to wild populations. A group of six individually-housed chickadees from two laboratory colony rooms were introduced to a new experimental colony room. Calls were recorded at baseline and weekly thereafter for eight weeks. We then conducted an operant conditioning study using a Go/No-go paradigm with birds not included in our experimental-colony, to determine whether black-capped chickadees could discriminate between calls from the two laboratory colonies, using four experimental-colony birds' baseline pre-assembly recordings as discriminative stimuli. We tested generalisation using novel, pre-assembly calls from the remaining two experimental-colony birds. Next, we tested whether chickadees perceived a change in calls following experimental-colony assembly, putatively indicative of vocal plasticity, marked by a decrease in discrimination accuracy. Chickadees successfully discriminated reinforced from non-reinforced calls using pre-assembly calls, but did not generalise this learning when later presented with novel pre-assembly calls from new birds. We posit that instead of employing colony-based discrimination, chickadees relied on individual-based discrimination. Chickadees were also not able to generalise their learning when presented with post-assembly calls from the same birds. Our findings suggest that chickadees were able to discriminate among individuals', but not colonies', chick-a-dee calls in an operant-conditioning procedure. Furthermore, chickadees can perceive differences in pre-versus-post assembly calls. Taken together, these findings suggest that group and individual identity information may be correlated, as post-assembly vocal plasticity impeded individual discrimination.
Collapse
Affiliation(s)
- Sarah M L Smeltz
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Moriah J Deimeke
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Prateek K Sahu
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Carolina Montenegro
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Katharine H Stenstrom
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Ilex Starenchak
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Victoria Rennie
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Inaara M Ebrahim
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - John Anthony Jones
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada.
| | - Christopher B Sturdy
- Department of Psychology, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada; Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
2
|
Pisanski K, Reby D, Oleszkiewicz A. Humans need auditory experience to produce typical volitional nonverbal vocalizations. COMMUNICATIONS PSYCHOLOGY 2024; 2:65. [PMID: 39242947 PMCID: PMC11332021 DOI: 10.1038/s44271-024-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/16/2024] [Indexed: 09/09/2024]
Abstract
Human nonverbal vocalizations such as screams and cries often reflect their evolved functions. Although the universality of these putatively primordial vocal signals and their phylogenetic roots in animal calls suggest a strong reflexive foundation, many of the emotional vocalizations that we humans produce are under our voluntary control. This suggests that, like speech, volitional vocalizations may require auditory input to develop typically. Here, we acoustically analyzed hundreds of volitional vocalizations produced by profoundly deaf adults and typically-hearing controls. We show that deaf adults produce unconventional and homogenous vocalizations of aggression and pain that are unusually high-pitched, unarticulated, and with extremely few harsh-sounding nonlinear phenomena compared to controls. In contrast, fear vocalizations of deaf adults are relatively acoustically typical. In four lab experiments involving a range of perception tasks with 444 participants, listeners were less accurate in identifying the intended emotions of vocalizations produced by deaf vocalizers than by controls, perceived their vocalizations as less authentic, and reliably detected deafness. Vocalizations of congenitally deaf adults with zero auditory experience were most atypical, suggesting additive effects of auditory deprivation. Vocal learning in humans may thus be required not only for speech, but also to acquire the full repertoire of volitional non-linguistic vocalizations.
Collapse
Affiliation(s)
- Katarzyna Pisanski
- ENES Bioacoustics Research Laboratory, CRNL Center for Research in Neuroscience in Lyon, University of Saint-Étienne, 42023, Saint-Étienne, France.
- CNRS French National Centre for Scientific Research, DDL Dynamics of Language Lab, University of Lyon 2, 69007, Lyon, France.
- Institute of Psychology, University of Wrocław, 50-527, Wrocław, Poland.
| | - David Reby
- ENES Bioacoustics Research Laboratory, CRNL Center for Research in Neuroscience in Lyon, University of Saint-Étienne, 42023, Saint-Étienne, France
- Institut Universitaire de France, Paris, France
| | - Anna Oleszkiewicz
- Institute of Psychology, University of Wrocław, 50-527, Wrocław, Poland.
- Department of Otorhinolaryngology, Smell and Taste Clinic, Carl Gustav Carus Medical School, Technische Universitaet Dresden, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Kleindorfer S, Brouwer L, Hauber ME, Teunissen N, Peters A, Louter M, Webster MS, Katsis AC, Sulloway FJ, Common LK, Austin VI, Colombelli-Négrel D. Nestling Begging Calls Resemble Maternal Vocal Signatures When Mothers Call Slowly to Embryos. Am Nat 2024; 203:267-283. [PMID: 38306283 DOI: 10.1086/728105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractVocal production learning (the capacity to learn to produce vocalizations) is a multidimensional trait that involves different learning mechanisms during different temporal and socioecological contexts. Key outstanding questions are whether vocal production learning begins during the embryonic stage and whether mothers play an active role in this through pupil-directed vocalization behaviors. We examined variation in vocal copy similarity (an indicator of learning) in eight species from the songbird family Maluridae, using comparative and experimental approaches. We found that (1) incubating females from all species vocalized inside the nest and produced call types including a signature "B element" that was structurally similar to their nestlings' begging call; (2) in a prenatal playback experiment using superb fairy wrens (Malurus cyaneus), embryos showed a stronger heart rate response to playbacks of the B element than to another call element (A); and (3) mothers that produced slower calls had offspring with greater similarity between their begging call and the mother's B element vocalization. We conclude that malurid mothers display behaviors concordant with pupil-directed vocalizations and may actively influence their offspring's early life through sound learning shaped by maternal call tempo.
Collapse
|
5
|
Audet JN, Couture M, Jarvis ED. Songbird species that display more-complex vocal learning are better problem-solvers and have larger brains. Science 2023; 381:1170-1175. [PMID: 37708288 DOI: 10.1126/science.adh3428] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Complex vocal learning, a critical component of human spoken language, has been assumed to be associated with more-advanced cognitive abilities. Tests of this hypothesis between individuals within a species have been inconclusive and have not been done across species. In this work, we measured an array of cognitive skills-namely, problem-solving, associative and reversal learning, and self-control-across 214 individuals of 23 bird species, including 19 wild-caught songbird species, two domesticated songbird species, and two wild-caught vocal nonlearning species. We found that the greater the vocal learning abilities of a species, the better their problem-solving skills and the relatively larger their brains. These conclusions held when controlling for noncognitive variables and phylogeny. Our results support a hypothesis of shared genetic and cognitive mechanisms between vocal learning, problem-solving, and bigger brains in songbirds.
Collapse
Affiliation(s)
- Jean-Nicolas Audet
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Mélanie Couture
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
6
|
Griffiths CS, Aaronson NL. Analysis of vocal communication in the genus Falco. Sci Rep 2023; 13:1846. [PMID: 36726013 PMCID: PMC9892567 DOI: 10.1038/s41598-023-27716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Vocal learning occurs in three clades of birds: hummingbirds, parrots, and songbirds. Examining vocal communication within the Falconiformes (sister taxon to the parrot/songbird clade) may offer information in understanding the evolution of vocal learning. Falcons are considered non-vocal learners and variation in vocalization may only be the result of variation in anatomical structure, with size as the major factor. We measured syringes in seven Falco species in the collection at the American Museum of Natural History and compiled data on weight, wing length, and tail length. Audio recordings were downloaded from several libraries and the peak frequency and frequency slope per harmonic number, number of notes in each syllable, number of notes per second, duration of each note, and inter-note duration was measured. Mass, wing length, and syringeal measurements were strongly, positively correlated, and maximum frequency is strongly, negatively correlated with the size. Frequency slope also correlates with size, although not as strongly. Both note and inter-note length vary significantly among the seven species, and this variation is not correlated with size. Maximum frequency and frequency slope can be used to identify species, with the possibility that bird sounds could be used to identify species in the field in real time.
Collapse
Affiliation(s)
- Carole S Griffiths
- LIU Brooklyn, Brooklyn, NY, 11201, USA. .,Department of Ornithology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Neil L Aaronson
- Physics Program, Stockton University, Galloway, NJ, 08205, USA
| |
Collapse
|
7
|
Selection levels on vocal individuality: strategic use or byproduct. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Arato J, Fitch WT. Phylogenetic signal in the vocalizations of vocal learning and vocal non-learning birds. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200241. [PMID: 34482730 PMCID: PMC8419570 DOI: 10.1098/rstb.2020.0241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Some animal vocalizations develop reliably in the absence of relevant experience, but an intriguing subset of animal vocalizations is learned: they require acoustic models during ontogeny in order to develop, and the learner's vocal output reflects those models. To what extent do such learned vocalizations reflect phylogeny? We compared the degree to which phylogenetic signal is present in vocal signals from a wide taxonomic range of birds, including both vocal learners (songbirds) and vocal non-learners. We used publically available molecular phylogenies and developed methods to analyse spectral and temporal features in a carefully curated collection of high-quality recordings of bird songs and bird calls, to yield acoustic distance measures. Our methods were initially developed using pairs of closely related North American and European bird species, and then applied to a non-overlapping random stratified sample of European birds. We found strong similarity in acoustic and genetic distances, which manifested itself as a significant phylogenetic signal, in both samples. In songbirds, both learned song and (mostly) unlearned calls allowed reconstruction of phylogenetic trees nearly isomorphic to the phylogenetic trees derived from genetic analysis. We conclude that phylogeny and inheritance constrain vocal structure to a surprising degree, even in learned birdsong. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Jozsef Arato
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Vernes SC, Janik VM, Fitch WT, Slater PJB. Vocal learning in animals and humans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200234. [PMID: 34482718 PMCID: PMC8422595 DOI: 10.1098/rstb.2020.0234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sonja C Vernes
- School of Biology, The University of St Andrews, St Andrews, UK.,Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vincent M Janik
- School of Biology, The University of St Andrews, St Andrews, UK
| | | | | |
Collapse
|