1
|
Cook PF, Hood C, Rouse A, Reichmuth C. Sensorimotor synchronization to rhythm in an experienced sea lion rivals that of humans. Sci Rep 2025; 15:12125. [PMID: 40312403 DOI: 10.1038/s41598-025-95279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/20/2025] [Indexed: 05/03/2025] Open
Abstract
Is human beat keeping unique among vertebrates? The only non-human data showing consistent and lagless beat matching to novel stimuli, including music, come from Ronan, a trained sea lion [Cook et al., J. Comp. Psychol., 127(4):412-427]. Ronan's convincing demonstration of adaptive auditory-motoric entrainment at age 3 years showed stronger tempo-phase relationships and higher variability than reported in similar studies of human subjects. This apparent performance mismatch has been used to suggest the mechanisms underlying her beat keeping ability are not isomorphic with those of humans. However, in the twelve years since our original report, Ronan has continued intermittent beat-keeping practice. Comparative arguments should consider her improved performance with increased experience and evaluate her ability against human subjects performing similar rhythmic tasks. Here, we report Ronan's contemporary ability to synchronize head movements with novel metronomic sounds presented at novel tempos. We also provide data for ten humans moving in time to the same stimuli using a comfortable arm motion with similar amplitude. This sea lion's sensorimotor synchronization was precise, consistent, and indistinguishable from or superior to that of typical adults. These findings challenge claims of unique neurobiological adaptations for beat keeping in humans.
Collapse
Affiliation(s)
- Peter F Cook
- New College of Florida, Sarasota, FL, 34243, USA.
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| | - Carson Hood
- New College of Florida, Sarasota, FL, 34243, USA
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Andrew Rouse
- New College of Florida, Sarasota, FL, 34243, USA
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| |
Collapse
|
2
|
Asthagiri A, Loui P. From Lab to Concert Hall: Effects of Live Performance on Neural Entrainment and Engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646931. [PMID: 40236171 PMCID: PMC11996556 DOI: 10.1101/2025.04.03.646931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neural entrainment to acoustic rhythms underlies intelligibility in speech as well as sensorimotor responses to music. This property of neural dynamics, where cortical oscillations align in phase and frequency with a periodic stimulus, is well-studied in the context of sensory encoding and perception. However, little is known about how affective components in naturalistic music influence neural entrainment. The present study investigates the effect of live versus recorded music on neural entrainment and tracking using phase-based and linear modeling approaches. 21 participants listened to 2 live and 2 recorded performances of fast and slow movements of solo violin while their EEG data were collected with a mobile system. Participants made behavioral ratings of engagement, spontaneity, pleasure, investment, focus, and distraction after each trial. Live performances were rated as more engaging, pleasurable, and spontaneous than recorded performances. Live trials showed significantly higher acoustic-EEG phase-locking than recorded trials in the frequency range associated with the note-rate of the fast excerpts. Furthermore, the effect of liveness on phase-locking was strongest in individuals who reported the greatest increases in pleasure and engagement for live over recorded trials. Finally, forward linear mapping revealed stronger neural tracking of spectral over amplitude-related acoustic features and a sensitivity to tempo in neural tracking. Altogether, results suggest that experiencing music live strengthens cerebro-acoustic relationships by enhancing rhythmically-driven neural entrainment alongside perceived pleasure and engagement. Significance Statement Neural oscillations entrain to rhythms in naturalistic acoustic stimuli, including speech and music. The rhythmic structure of music impacts the timescale of neural entrainment and facilitates the pleasurable urge to move with music, but less is known about how the live experience of music affects neural entrainment. Here, we measure phase-locking and neural tracking between listeners' EEG activity and naturalistic acoustics during live and recorded solo violin performances, demonstrating that neural-acoustic interactions are driven by musical rhythms and strengthened by the perception of liveness. Together, the study provides insight into neural mechanisms underlying the pleasure of live music, suggesting that the social and affective experience of liveness alters the strength of neural entrainment.
Collapse
|
3
|
Muñoz‐Caracuel M, Muñoz V, Ruiz‐Martínez FJ, Vázquez Morejón AJ, Gómez CM. Systemic neurophysiological entrainment to behaviorally relevant rhythmic stimuli. Physiol Rep 2024; 12:e70079. [PMID: 39380173 PMCID: PMC11461278 DOI: 10.14814/phy2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Physiological oscillations, such as those involved in brain activity, heartbeat, and respiration, display inherent rhythmicity across various timescales. However, adaptive behavior arises from the interaction between these intrinsic rhythms and external environmental cues. In this study, we used multimodal neurophysiological recordings, simultaneously capturing signals from the central and autonomic nervous systems (CNS and ANS), to explore the dynamics of brain and body rhythms in response to rhythmic auditory stimulation across three conditions: baseline (no auditory stimulation), passive auditory processing, and active auditory processing (discrimination task). Our findings demonstrate that active engagement with auditory stimulation synchronizes both CNS and ANS rhythms with the external rhythm, unlike passive and baseline conditions, as evidenced by power spectral density (PSD) and coherence analyses. Importantly, phase angle analysis revealed a consistent alignment across participants between their physiological oscillatory phases at stimulus or response onsets. This alignment was associated with reaction times, suggesting that certain phases of physiological oscillations are spontaneously prioritized across individuals due to their adaptive role in sensorimotor behavior. These results highlight the intricate interplay between CNS and ANS rhythms in optimizing sensorimotor responses to environmental demands, suggesting a potential mechanism of embodied predictive processing.
Collapse
Grants
- PID2022-139151OB-I00 MEC | Agencia Estatal de Investigación (AEI)
- P20_00537 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- MEC | Agencia Estatal de Investigación (AEI)
- Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Manuel Muñoz‐Caracuel
- Department of Experimental PsychologyUniversity of SevilleSevillaSpain
- Mental Health UnitHospital Universitario Virgen del RocioSevilleSpain
| | - Vanesa Muñoz
- Department of Experimental PsychologyUniversity of SevilleSevillaSpain
| | | | - Antonio J. Vázquez Morejón
- Mental Health UnitHospital Universitario Virgen del RocioSevilleSpain
- Department of Personality, Evaluation and Psychological TreatmentsUniversity of SevilleSevillaSpain
| | - Carlos M. Gómez
- Department of Experimental PsychologyUniversity of SevilleSevillaSpain
| |
Collapse
|
4
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Osiecka AN, Fearey J, Ravignani A, Burchardt LS. Isochrony in barks of Cape fur seal ( Arctocephalus pusillus pusillus) pups and adults. Ecol Evol 2024; 14:e11085. [PMID: 38463637 PMCID: PMC10920323 DOI: 10.1002/ece3.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome-like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks-a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.
Collapse
Affiliation(s)
- Anna N. Osiecka
- Department of Vertebrate Ecology and Zoology, Faculty of BiologyUniversity of GdańskGdańskPoland
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jack Fearey
- Sea Search Research and Conservation NPCCape TownSouth Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrea Ravignani
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhus CDenmark
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Lara S. Burchardt
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Leibniz‐Zentrum Allgemeine SprachwissenschaftBerlinGermany
| |
Collapse
|
6
|
McCowan B, Hubbard J, Walker L, Sharpe F, Frediani J, Doyle L. Interactive bioacoustic playback as a tool for detecting and exploring nonhuman intelligence: "conversing" with an Alaskan humpback whale. PeerJ 2023; 11:e16349. [PMID: 38047015 PMCID: PMC10693240 DOI: 10.7717/peerj.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
Here we report on a rare and opportunistic acoustic turn-taking with an adult female humpback whale, known as Twain, in Southeast Alaska. Post hoc acoustic and statistical analyses of a 20-min acoustic exchange between the broadcast of a recorded contact call, known as a 'whup/throp', with call responses by Twain revealed an intentional human-whale acoustic (and behavioral) interaction. Our results show that Twain participated both physically and acoustically in three phases of interaction (Phase 1: Engagement, Phase 2: Agitation, Phase 3: Disengagement), independently determined by blind observers reporting on surface behavior and respiratory activity of the interacting whale. A close examination of both changes to the latency between Twain's calls and the temporal matching to the latency of the exemplar across phases indicated that Twain was actively engaged in the exchange during Phase 1 (Engagement), less so during Phase 2 (Agitation), and disengaged during Phase 3 (Disengagement). These results, while preliminary, point to several key considerations for effective playback design, namely the importance of salient, dynamic and adaptive playbacks, that should be utilized in experimentation with whales and other interactive nonhuman species.
Collapse
Affiliation(s)
- Brenda McCowan
- SVM: Population Health and Reproduction, University of California, Davis, Davis, California, United States
| | - Josephine Hubbard
- Animal Behavior Graduate Group, University of California, Davis, Davis, California, United States
| | - Lisa Walker
- Grooved Whale Project, Vancouver, British Columbia, Canada
| | - Fred Sharpe
- Alaska Whale Foundation, Petersburg, Alaska, United States
| | - Jodi Frediani
- Jodi Frediani Photography, Santa Cruz, California, United States
| | - Laurance Doyle
- SETI Institute, Mountain View, California, United States
| |
Collapse
|
7
|
Hensley NM, Rivers TJ, Gerrish GA, Saha R, Oakley TH. Collective synchrony of mating signals modulated by ecological cues and social signals in bioluminescent sea fireflies. Proc Biol Sci 2023; 290:20232311. [PMID: 38018106 PMCID: PMC10685132 DOI: 10.1098/rspb.2023.2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Individuals often employ simple rules that can emergently synchronize behaviour. Some collective behaviours are intuitively beneficial, but others like mate signalling in leks occur across taxa despite theoretical individual costs. Whether disparate instances of synchronous signalling are similarly organized is unknown, largely due to challenges observing many individuals simultaneously. Recording field collectives and ex situ playback experiments, we describe principles of synchronous bioluminescent signals produced by marine ostracods (Crustacea; Luxorina) that seem behaviorally convergent with terrestrial fireflies, and with whom they last shared a common ancestor over 500 Mya. Like synchronous fireflies, groups of signalling males use visual cues (intensity and duration of light) to decide when to signal. Individual ostracods also modulate their signal based on the distance to nearest neighbours. During peak darkness, luminescent 'waves' of synchronous displays emerge and ripple across the sea floor approximately every 60 s, but such periodicity decays within and between nights after the full moon. Our data reveal these bioluminescent aggregations are sensitive to both ecological and social light sources. Because the function of collective signals is difficult to dissect, evolutionary convergence, like in the synchronous visual displays of diverse arthropods, provides natural replicates to understand the generalities that produce emergent group behaviour.
Collapse
Affiliation(s)
- Nicholai M. Hensley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Trevor J. Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66405, USA
| | - Gretchen A. Gerrish
- Center for Limnology, Trout Lake Station, University of Wisconsin, Boulder Junction, Madison, WI 54512, USA
| | - Raj Saha
- Roux Institute, Northeastern University, Portland, ME 04101, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
8
|
Criscuolo A, Schwartze M, Prado L, Ayala Y, Merchant H, Kotz SA. Macaque monkeys and humans sample temporal regularities in the acoustic environment. Prog Neurobiol 2023; 229:102502. [PMID: 37442410 DOI: 10.1016/j.pneurobio.2023.102502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Many animal species show comparable abilities to detect basic rhythms and produce rhythmic behavior. Yet, the capacities to process complex rhythms and synchronize rhythmic behavior appear to be species-specific: vocal learning animals can, but some primates might not. This discrepancy is of high interest as there is a putative link between rhythm processing and the development of sophisticated sensorimotor behavior in humans. Do our closest ancestors show comparable endogenous dispositions to sample the acoustic environment in the absence of task instructions and training? We recorded EEG from macaque monkeys and humans while they passively listened to isochronous equitone sequences. Individual- and trial-level analyses showed that macaque monkeys' and humans' delta-band neural oscillations encoded and tracked the timing of auditory events. Further, mu- (8-15 Hz) and beta-band (12-20 Hz) oscillations revealed the superimposition of varied accentuation patterns on a subset of trials. These observations suggest convergence in the encoding and dynamic attending of temporal regularities in the acoustic environment, bridging a gap in the phylogenesis of rhythm cognition.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Michael Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Yaneri Ayala
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230 Queretaro, QRO, Mexico
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
9
|
Greenfield MD, Merker B. Coordinated rhythms in animal species, including humans: Entrainment from bushcricket chorusing to the philharmonic orchestra. Neurosci Biobehav Rev 2023; 153:105382. [PMID: 37673282 DOI: 10.1016/j.neubiorev.2023.105382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Coordinated group displays featuring precise entrainment of rhythmic behavior between neighbors occur not only in human music, dance and drill, but in the acoustic or optical signaling of a number of species of arthropods and anurans. In this review we describe the mechanisms of phase resetting and phase and tempo adjustments that allow the periodic output of signaling individuals to be aligned in synchronized rhythmic group displays. These mechanisms are well described in some of the synchronizing arthropod species, in which conspecific signals reset an individual's endogenous output oscillators in such a way that the joint rhythmic signals are locked in phase. Some of these species are capable of mutually adjusting both the phase and tempo of their rhythmic signaling, thereby achieving what is called perfect synchrony, a capacity which otherwise is found only in humans. We discuss this disjoint phylogenetic distribution of inter-individual rhythmic entrainment in the context of the functions such entrainment might perform in the various species concerned, and the adaptive circumstances in which it might evolve.
Collapse
Affiliation(s)
- Michael D Greenfield
- ENES Bioacoustics Research Lab, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Bjorn Merker
- Independent Scholar, SE-29194 Kristianstad, Sweden
| |
Collapse
|
10
|
Jadoul Y, Ravignani A. Modelling the emergence of synchrony from decentralized rhythmic interactions in animal communication. Proc Biol Sci 2023; 290:20230876. [PMID: 37464759 PMCID: PMC10354483 DOI: 10.1098/rspb.2023.0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
To communicate, an animal's strategic timing of rhythmic signals is crucial. Evolutionary, game-theoretical, and dynamical systems models can shed light on the interaction between individuals and the associated costs and benefits of signalling at a specific time. Mathematical models that study rhythmic interactions from a strategic or evolutionary perspective are rare in animal communication research. But new inspiration may come from a recent game theory model of how group synchrony emerges from local interactions of oscillatory neurons. In the study, the authors analyse when the benefit of joint synchronization outweighs the cost of individual neurons sending electrical signals to each other. They postulate there is a benefit for pairs of neurons to fire together and a cost for a neuron to communicate. The resulting model delivers a variant of a classical dynamical system, the Kuramoto model. Here, we present an accessible overview of the Kuramoto model and evolutionary game theory, and of the 'oscillatory neurons' model. We interpret the model's results and discuss the advantages and limitations of using this particular model in the context of animal rhythmic communication. Finally, we sketch potential future directions and discuss the need to further combine evolutionary dynamics, game theory and rhythmic processes in animal communication studies.
Collapse
Affiliation(s)
- Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Raimondi T, Di Panfilo G, Pasquali M, Zarantonello M, Favaro L, Savini T, Gamba M, Ravignani A. Isochrony and rhythmic interaction in ape duetting. Proc Biol Sci 2023; 290:20222244. [PMID: 36629119 PMCID: PMC9832542 DOI: 10.1098/rspb.2022.2244] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.
Collapse
Affiliation(s)
- Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giovanni Di Panfilo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Matteo Pasquali
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Martina Zarantonello
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Livio Favaro
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Tommaso Savini
- Conservation Ecology Program, King Mongkut University of Technology Thonburi, School of Bioresources and Technology, Bangkok, Thailand
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Denmark
| |
Collapse
|
12
|
Sarfati R, Peleg O. Chimera states among synchronous fireflies. SCIENCE ADVANCES 2022; 8:eadd6690. [PMID: 36383660 PMCID: PMC9668303 DOI: 10.1126/sciadv.add6690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Systems of oscillators often converge to a state of synchrony when sufficiently interconnected. Twenty years ago, the mathematical analysis of models of coupled oscillators revealed the possibility for complex phases that exhibit a coexistence of synchronous and asynchronous clusters, known as "chimera states." Beyond their recurrence in theoretical models, chimeras have been observed under specifically designed experimental conditions, yet their emergence in nature has remained elusive. Here, we report evidence for the occurrence of chimeras in a celebrated realization of natural synchrony: fireflies. In video recordings of Photuris frontalis fireflies, we observe, within a single swarm, the spontaneous emergence of different groups flashing with the same periodicity but with a constant delay between them. From the three-dimensional reconstruction of the swarm, we demonstrate that these states are stable over time and spatially intertwined. We discuss the implications of these findings on the synergy between mathematical models and collective behavior.
Collapse
Affiliation(s)
- Raphaël Sarfati
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Orit Peleg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- Department of Applied Math, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
13
|
Ravignani A, Lumaca M, Kotz SA. Interhemispheric Brain Communication and the Evolution of Turn-Taking in Mammals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the last 20 years, research on turn-taking and duetting has flourished in at least three, historically separate disciplines: animal behavior, language sciences, and music cognition. While different in scope and methods, all three ultimately share one goal—namely the understanding of timed interactions among conspecifics. In this perspective, we aim at connecting turn-taking and duetting across species from a neural perspective. While we are still far from a defined neuroethology of turn-taking, we argue that the human neuroscience of turn-taking and duetting can inform animal bioacoustics. For this, we focus on a particular concept, interhemispheric connectivity, and its main white-matter substrate, the corpus callosum. We provide an overview of the role of corpus callosum in human neuroscience and interactive music and speech. We hypothesize its mechanistic connection to turn-taking and duetting in our species, and a potential translational link to mammalian research. We conclude by illustrating empirical venues for neuroethological research of turn-taking and duetting in mammals.
Collapse
|
14
|
Fiveash A, Bella SD, Bigand E, Gordon RL, Tillmann B. You got rhythm, or more: The multidimensionality of rhythmic abilities. Atten Percept Psychophys 2022; 84:1370-1392. [PMID: 35437703 PMCID: PMC9614186 DOI: 10.3758/s13414-022-02487-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Humans have a remarkable capacity for perceiving and producing rhythm. Rhythmic competence is often viewed as a single concept, with participants who perform more or less accurately on a single rhythm task. However, research is revealing numerous sub-processes and competencies involved in rhythm perception and production, which can be selectively impaired or enhanced. To investigate whether different patterns of performance emerge across tasks and individuals, we measured performance across a range of rhythm tasks from different test batteries. Distinct performance patterns could potentially reveal separable rhythmic competencies that may draw on distinct neural mechanisms. Participants completed nine rhythm perception and production tasks selected from the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA), the Beat Alignment Test (BAT), the Beat-Based Advantage task (BBA), and two tasks from the Burgundy best Musical Aptitude Test (BbMAT). Principal component analyses revealed clear separation of task performance along three main dimensions: production, beat-based rhythm perception, and sequence memory-based rhythm perception. Hierarchical cluster analyses supported these results, revealing clusters of participants who performed selectively more or less accurately along different dimensions. The current results support the hypothesis of divergence of rhythmic skills. Based on these results, we provide guidelines towards a comprehensive testing of rhythm abilities, including at least three short tasks measuring: (1) rhythm production (e.g., tapping to metronome/music), (2) beat-based rhythm perception (e.g., BAT), and (3) sequence memory-based rhythm processing (e.g., BBA). Implications for underlying neural mechanisms, future research, and potential directions for rehabilitation and training programs are discussed.
Collapse
Affiliation(s)
- Anna Fiveash
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000, Lyon, France.
- University of Lyon 1, Lyon, France.
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | | | - Reyna L Gordon
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CRNL, CNRS, UMR 5292, INSERM U1028, F-69000, Lyon, France
- University of Lyon 1, Lyon, France
| |
Collapse
|
15
|
Lomas JD, Lin A, Dikker S, Forster D, Lupetti ML, Huisman G, Habekost J, Beardow C, Pandey P, Ahmad N, Miyapuram K, Mullen T, Cooper P, van der Maden W, Cross ES. Resonance as a Design Strategy for AI and Social Robots. Front Neurorobot 2022; 16:850489. [PMID: 35574227 PMCID: PMC9097027 DOI: 10.3389/fnbot.2022.850489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human-robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of "sympathetic resonance" as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human-robot interactions.
Collapse
Affiliation(s)
- James Derek Lomas
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Albert Lin
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Suzanne Dikker
- Department of Psychology, New York University, New York, NY, United States
- Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Deborah Forster
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Maria Luce Lupetti
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Gijs Huisman
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Julika Habekost
- The Design Lab, California Institute of Information and Communication Technologies, University of California, San Diego, San Diego, CA, United States
| | - Caiseal Beardow
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Pankaj Pandey
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Nashra Ahmad
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Krishna Miyapuram
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Tim Mullen
- Intheon Labs, San Diego, CA, United States
| | - Patrick Cooper
- Department of Physics, Duquesne University, Pittsburgh, PA, United States
| | - Willem van der Maden
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Emily S. Cross
- Social Robotics, Institute of Neuroscience and Psychology, School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- SOBA Lab, School of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|