1
|
Ma H, Wang Z, Han P, Fan P, Chapman CA, Garber PA, Fan P. Small apes adjust rhythms to facilitate song coordination. Curr Biol 2024; 34:935-945.e3. [PMID: 38266649 DOI: 10.1016/j.cub.2023.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Song coordination is a universal characteristic of human music. Many animals also produce well-coordinated duets or choruses that resemble human music. However, the mechanism and evolution of song coordination have only recently been studied in animals. Here, we studied the mechanism of song coordination in three closely related species of wild Nomascus gibbons that live in polygynous groups. In each species, song bouts were dominated by male solo sequences (referred to hereafter as male sequence), and females contributed stereotyped great calls to coordinate with males. Considering the function of rhythm in facilitating song coordination in human music and animal vocalizations, we predicted that adult males adjust their song rhythm to facilitate song coordination with females. In support of this prediction, we found that adult males produced significantly more isochronous rhythms with a faster tempo in male sequences that were followed by successful female great calls (a complete sequence with "introductory" and "wa" notes). The difference in isochrony and tempos between successful great call sequences and male sequences was smaller in N. concolor compared with the other two species, which may make it difficult for females to predict a male's precise temporal pattern. Consequently, adult females of N. concolor produced more failed great call (an incomplete sequence with only introductory notes) sequences. We propose that the high degree of rhythm change functions as an unambiguous signal that can be easily perceived by receivers. In this regard, gibbon vocalizations offer an instructive model to understand the origins and evolution of human music.
Collapse
Affiliation(s)
- Haigang Ma
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Zidi Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Pu Han
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Penglai Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, Guangxi, China; Endangered Animal Ecology, College of Life Sciences, Guangxi Normal University, Guilin 541006, Guangxi, China
| | - Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA; School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA; International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, Yunnan, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| |
Collapse
|
2
|
Greenfield MD, Merker B. Coordinated rhythms in animal species, including humans: Entrainment from bushcricket chorusing to the philharmonic orchestra. Neurosci Biobehav Rev 2023; 153:105382. [PMID: 37673282 DOI: 10.1016/j.neubiorev.2023.105382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Coordinated group displays featuring precise entrainment of rhythmic behavior between neighbors occur not only in human music, dance and drill, but in the acoustic or optical signaling of a number of species of arthropods and anurans. In this review we describe the mechanisms of phase resetting and phase and tempo adjustments that allow the periodic output of signaling individuals to be aligned in synchronized rhythmic group displays. These mechanisms are well described in some of the synchronizing arthropod species, in which conspecific signals reset an individual's endogenous output oscillators in such a way that the joint rhythmic signals are locked in phase. Some of these species are capable of mutually adjusting both the phase and tempo of their rhythmic signaling, thereby achieving what is called perfect synchrony, a capacity which otherwise is found only in humans. We discuss this disjoint phylogenetic distribution of inter-individual rhythmic entrainment in the context of the functions such entrainment might perform in the various species concerned, and the adaptive circumstances in which it might evolve.
Collapse
Affiliation(s)
- Michael D Greenfield
- ENES Bioacoustics Research Lab, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Bjorn Merker
- Independent Scholar, SE-29194 Kristianstad, Sweden
| |
Collapse
|
3
|
Perez DM, Klunk CL, Araujo SBL. Imperfect synchrony in animal displays: why does it occur and what is the true role of leadership? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200339. [PMID: 34420387 PMCID: PMC8384059 DOI: 10.1098/rstb.2020.0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Synchrony can be defined as the precise coordination between independent individuals, and this behaviour is more enigmatic when it is imperfect. The traditional theoretical explanation for imperfect synchronous courtship is that it arises as a by-product of the competition between males to broadcast leading signals to attract female attention. This competition is considered an evolutionary stable strategy maintained through sexual selection. However, previous studies have revealed that leading signals are not honest indicators of male quality. We studied imperfect courtship synchrony in fiddler crabs to mainly test whether (i) signal leadership and rate are defined by male quality and (ii) signal leadership generates synchrony. Fiddler crab males wave their enlarged claws during courtship, and females prefer leading males-displaying ahead of their neighbour(s). We filmed groups of waving males in the field to detect how often individuals were leaders and if they engaged in synchrony. Overall, we found that courtship effort is not directly related to male size, a general proxy for quality. Contrary to the long-standing assumption, we also revealed that leadership is not directly related to group synchrony, but faster wave rate correlates with both leadership and synchrony. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Daniela M. Perez
- Graduate Program in Ecology and Conservation, Universidade Federal do Paraná, Curitiba, Parana 81531-990, Brazil
| | - Cristian L. Klunk
- Graduate Program in Ecology and Conservation, Universidade Federal do Paraná, Curitiba, Parana 81531-990, Brazil
| | - Sabrina B. L. Araujo
- Department of Physics, Laboratory of Biological Interactions, Universidade Federal do Paraná, Curitiba, Parana 81531-990, Brazil
| |
Collapse
|
4
|
Greenfield MD, Honing H, Kotz SA, Ravignani A. Synchrony and rhythm interaction: from the brain to behavioural ecology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200324. [PMID: 34420379 DOI: 10.1098/rstb.2020.0324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short-from several seconds down to a fraction of a second-periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Michael D Greenfield
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Equipe Neuro-Ethologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, Universtiy Lyon/Saint-Etienne, 42023 Saint Etienne, France
| | - Henkjan Honing
- Music Cognition Group (MCG), Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|