1
|
De-Kayne R, Gordon IJ, Terblanche RF, Collins S, Saitoti Omufwoko K, Martins DJ, Martin SH. Incomplete recombination suppression fuels extensive haplotype diversity in a butterfly colour pattern supergene. PLoS Biol 2025; 23:e3003043. [PMID: 40019922 PMCID: PMC11918383 DOI: 10.1371/journal.pbio.3003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/18/2025] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Supergenes can evolve when recombination-suppressing mechanisms like inversions promote co-inheritance of alleles at two or more polymorphic loci that affect a complex trait. Theory shows that such genetic architectures can be favoured under balancing selection or local adaptation in the face of gene flow, but they can also bring costs associated with reduced opportunities for recombination. These costs may in turn be offset by rare 'gene flux' between inverted and ancestral haplotypes, with a range of possible outcomes. We aimed to shed light on these processes by investigating the 'BC supergene', a large genomic region comprising multiple rearrangements associated with three distinct wing colour morphs in Danaus chrysippus, a butterfly known as the African monarch, African queen and plain tiger. Using whole-genome resequencing data from 174 individuals, we first confirm the effects of BC on wing colour pattern: background melanism is associated with SNPs in the promoter region of yellow, within an inverted subregion of the supergene, while forewing tip pattern is most likely associated with copy-number variation in a separate subregion of the supergene. We then show that haplotype diversity within the supergene is surprisingly extensive: there are at least six divergent haplotype groups that experience suppressed recombination with respect to each other. Despite high divergence between these haplotype groups, we identify an unexpectedly large number of natural recombinant haplotypes. Several of the inferred crossovers occurred between adjacent inversion 'modules', while others occurred within inversions. Furthermore, we show that new haplotype groups have arisen through recombination between two pre-existing ones. Specifically, an allele for dark colouration in the promoter of yellow has recombined into distinct haplotype backgrounds on at least two separate occasions. Overall, our findings paint a picture of dynamic evolution of supergene haplotypes, fuelled by incomplete recombination suppression.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ian J. Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Reinier F. Terblanche
- Department of Conservation Ecology & Entomology, University of Stellenbosch, Stellenbosch, South Africa
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Kennedy Saitoti Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - Simon H. Martin
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Mykhailenko A, Zieliński P, Bednarz A, Schlyter F, Andersson MN, Antunes B, Borowski Z, Krokene P, Melin M, Morales-García J, Müller J, Nowak Z, Schebeck M, Stauffer C, Viiri H, Zaborowska J, Babik W, Nadachowska-Brzyska K. Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest. Genome Biol Evol 2024; 16:evae263. [PMID: 39656753 DOI: 10.1093/gbe/evae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Collapse
Affiliation(s)
- Anastasiia Mykhailenko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aleksandra Bednarz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Fredrik Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, 234 22 Lomma, Sweden
- ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | | | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Zbigniew Borowski
- Departament of Forest Ecology, Forest Research Institute, 05-090 Raszyn, Poland
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Markus Melin
- Forest Health and Bidiversity Group, Natural Resources Institute Finland, 80100 Joensuu, Finland
| | - Julia Morales-García
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, 94481 Grafenau, Germany
| | - Zuzanna Nowak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Heli Viiri
- UPM Forest, UPM-Kymmene, 33100 Tampere, Finland
| | - Julia Zaborowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
3
|
Euclide PT, Larson WA, Shi Y, Gruenthal K, Christensen KA, Seeb J, Seeb L. Conserved islands of divergence associated with adaptive variation in sockeye salmon are maintained by multiple mechanisms. Mol Ecol 2024; 33:e17126. [PMID: 37695544 PMCID: PMC11628665 DOI: 10.1111/mec.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Local adaptation is facilitated by loci clustered in relatively few regions of the genome, termed genomic islands of divergence. The mechanisms that create and maintain these islands and how they contribute to adaptive divergence is an active research topic. Here, we use sockeye salmon as a model to investigate both the mechanisms responsible for creating islands of divergence and the patterns of differentiation at these islands. Previous research suggested that multiple islands contributed to adaptive radiation of sockeye salmon. However, the low-density genomic methods used by these studies made it difficult to fully elucidate the mechanisms responsible for islands and connect genotypes to adaptive variation. We used whole genome resequencing to genotype millions of loci to investigate patterns of genetic variation at islands and the mechanisms that potentially created them. We discovered 64 islands, including 16 clustered in four genomic regions shared between two isolated populations. Characterisation of these four regions suggested that three were likely created by structural variation, while one was created by processes not involving structural variation. All four regions were small (< 600 kb), suggesting low recombination regions do not have to span megabases to be important for adaptive divergence. Differentiation at islands was not consistently associated with established population attributes. In sum, the landscape of adaptive divergence and the mechanisms that create it are complex; this complexity likely helps to facilitate fine-scale local adaptation unique to each population.
Collapse
Affiliation(s)
- Peter T. Euclide
- Department of Forestry and Natural ResourcesIllinois‐Indiana Sea GrantPurdue UniversityWest LafayetteIndianaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksJuneauAlaskaUSA
| | - Kristen Gruenthal
- Alaska Department of Fish and GameJuneauAlaskaUSA
- Office of Applied Science, Wisconsin Department of Natural Resources, Wisconsin Cooperative Fishery Research UnitCollege of Natural Resources, University of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | | | - Jim Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Lisa Seeb
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Guitart X, Porubsky D, Yoo D, Dougherty ML, Dishuck PC, Munson KM, Lewis AP, Hoekzema K, Knuth J, Chang S, Pastinen T, Eichler EE. Independent expansion, selection, and hypervariability of the TBC1D3 gene family in humans. Genome Res 2024; 34:1798-1810. [PMID: 39107043 DOI: 10.1101/gr.279299.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
TBC1D3 is a primate-specific gene family that has expanded in the human lineage and has been implicated in neuronal progenitor proliferation and expansion of the frontal cortex. The gene family and its expression have been challenging to investigate because it is embedded in high-identity and highly variable segmental duplications. We sequenced and assembled the gene family using long-read sequencing data from 34 humans and 11 nonhuman primate species. Our analysis shows that this particular gene family has independently duplicated in at least five primate lineages, and the duplicated loci are enriched at sites of large-scale chromosomal rearrangements on Chromosome 17. We find that all human copy-number variation maps to two distinct clusters located at Chromosome 17q12 and that humans are highly structurally variable at this locus, differing by as many as 20 copies and ∼1 Mbp in length depending on haplotypes. We also show evidence of positive selection, as well as a significant change in the predicted human TBC1D3 protein sequence. Last, we find that, despite multiple duplications, human TBC1D3 expression is limited to a subset of copies and, most notably, from a single paralog group: TBC1D3-CDKL These observations may help explain why a gene potentially important in cortical development can be so variable in the human population.
Collapse
Affiliation(s)
- Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Max L Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Stephen Chang
- Department of Biochemistry
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305, USA
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, Missouri 64108, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
5
|
Versoza CJ, Pfeifer SP. A hybrid genome assembly of the endangered aye-aye (Daubentonia madagascariensis). G3 (BETHESDA, MD.) 2024; 14:jkae185. [PMID: 39109845 PMCID: PMC11457058 DOI: 10.1093/g3journal/jkae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024]
Abstract
The aye-aye (Daubentonia madagascariensis) is the only extant member of the Daubentoniidae primate family. Although several reference genomes exist for this endangered strepsirrhine primate, the predominant usage of short-read sequencing has resulted in limited assembly contiguity and completeness, and no protein-coding gene annotations have yet been released. Here, we present a novel, fully annotated, chromosome-level hybrid de novo assembly for the species based on a combination of Oxford Nanopore Technologies long reads and Illumina short reads and scaffolded using genome-wide chromatin interaction data-a community resource that will improve future conservation efforts as well as primate comparative analyses.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Rayner JG, Eichenberger F, Bainbridge JVA, Zhang S, Zhang X, Yusuf LH, Balenger S, Gaggiotti OE, Bailey NW. Competing adaptations maintain nonadaptive variation in a wild cricket population. Proc Natl Acad Sci U S A 2024; 121:e2317879121. [PMID: 39088392 PMCID: PMC11317585 DOI: 10.1073/pnas.2317879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/08/2024] [Indexed: 08/03/2024] Open
Abstract
How emerging adaptive variants interact is an important factor in the evolution of wild populations, but the opportunity to empirically study this interaction is rare. We recently documented the emergence of an adaptive phenotype "curly-wing" in Hawaiian populations of field crickets (Teleogryllus oceanicus). Curly-wing inhibits males' ability to sing, protecting them from eavesdropping parasitoid flies (Ormia ochracea). Surprisingly, curly-wing co-occurs with similarly protective silent "flatwing" phenotypes in multiple populations, in which neither phenotype has spread to fixation. These two phenotypes are frequently coexpressed, but since either sufficiently reduces song amplitude to evade the fly, their coexpression confers no additional fitness benefit. Numerous "off-target" phenotypic changes are known to accompany flatwing, and we find that curly-wing, too, negatively impacts male courtship ability and affects mass and survival of females under lab conditions. We show through crosses and genomic and mRNA sequencing that curly-wing expression is associated with variation on a single autosome. In parallel analyses of flatwing, our results reinforce previous findings of X-linked single-locus inheritance. By combining insights into the genetic architecture of these alternative phenotypes with simulations and field observations, we show that the co-occurrence of these two adaptations impedes either from fixing, despite extreme fitness benefits, due to fitness epistasis. This co-occurrence of similar adaptive forms in the same populations might be more common than is generally considered and could be an important force inhibiting adaptive evolution in wild populations of sexually reproducing organisms.
Collapse
Affiliation(s)
- Jack G. Rayner
- Department of Biology, University of Maryland, College Park, MD20740
| | - Franca Eichenberger
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
| | | | - Shangzhe Zhang
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
| | - Xiao Zhang
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin300387, China
| | - Leeban H. Yusuf
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
| | - Susan Balenger
- College of Biological Sciences, University of Minnesota, St. Paul, MN55108
| | - Oscar E. Gaggiotti
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
| | - Nathan W. Bailey
- Centre for Biological Diversity, University of St Andrews, St AndrewsKY16 9TH, United Kingdom
| |
Collapse
|
7
|
Orteu A, Hornett EA, Reynolds LA, Warren IA, Hurst GDD, Martin SH, Jiggins CD. Optix and cortex/ivory/mir-193 again: the repeated use of two mimicry hotspot loci. Proc Biol Sci 2024; 291:20240627. [PMID: 39045691 PMCID: PMC11267468 DOI: 10.1098/rspb.2024.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.
Collapse
Affiliation(s)
- Anna Orteu
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Louise A. Reynolds
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Ian A. Warren
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
8
|
Nosil P, de Carvalho CF, Villoutreix R, Zamorano LS, Sinclair-Waters M, Planidin NP, Parchman TL, Feder J, Gompert Z. Evolution repeats itself in replicate long-term studies in the wild. SCIENCE ADVANCES 2024; 10:eadl3149. [PMID: 38787954 PMCID: PMC11122682 DOI: 10.1126/sciadv.adl3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
The extent to which evolution is repeatable remains debated. Here, we study changes over time in the frequency of cryptic color-pattern morphs in 10 replicate long-term field studies of a stick insect, each spanning at least a decade (across 30 years of total data). We find predictable "up-and-down" fluctuations in stripe frequency in all populations, representing repeatable evolutionary dynamics based on standing genetic variation. A field experiment demonstrates that these fluctuations involve negative frequency-dependent natural selection (NFDS). These fluctuations rely on demographic and selective variability that pushes populations away from equilibrium, such that they can reliably move back toward it via NFDS. Last, we show that the origin of new cryptic forms is associated with multiple structural genomic variants such that which mutations arise affects evolution at larger temporal scales. Thus, evolution from existing variation is predictable and repeatable, but mutation adds complexity even for traits evolving deterministically under natural selection.
Collapse
Affiliation(s)
- Patrik Nosil
- Theoretical and Experimental Ecology (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Laura S. Zamorano
- Theoretical and Experimental Ecology (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | | | - Jeffrey Feder
- Department of Biology, Notre Dame University, South Bend, IN 11111, USA
| | - Zach Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
9
|
Guitart X, Porubsky D, Yoo D, Dougherty ML, Dishuck PC, Munson KM, Lewis AP, Hoekzema K, Knuth J, Chang S, Pastinen T, Eichler EE. Independent expansion, selection and hypervariability of the TBC1D3 gene family in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584650. [PMID: 38654825 PMCID: PMC11037872 DOI: 10.1101/2024.03.12.584650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
TBC1D3 is a primate-specific gene family that has expanded in the human lineage and has been implicated in neuronal progenitor proliferation and expansion of the frontal cortex. The gene family and its expression have been challenging to investigate because it is embedded in high-identity and highly variable segmental duplications. We sequenced and assembled the gene family using long-read sequencing data from 34 humans and 11 nonhuman primate species. Our analysis shows that this particular gene family has independently duplicated in at least five primate lineages, and the duplicated loci are enriched at sites of large-scale chromosomal rearrangements on chromosome 17. We find that most humans vary along two TBC1D3 clusters where human haplotypes are highly variable in copy number, differing by as many as 20 copies, and structure (structural heterozygosity 90%). We also show evidence of positive selection, as well as a significant change in the predicted human TBC1D3 protein sequence. Lastly, we find that, despite multiple duplications, human TBC1D3 expression is limited to a subset of copies and, most notably, from a single paralog group: TBC1D3-CDKL. These observations may help explain why a gene potentially important in cortical development can be so variable in the human population.
Collapse
Affiliation(s)
- Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Max L. Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen Chang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Orteu A, Kucka M, Gordon IJ, Ng’iru I, van der Heijden ESM, Talavera G, Warren IA, Collins S, ffrench-Constant RH, Martins DJ, Chan YF, Jiggins CD, Martin SH. Transposable Element Insertions Are Associated with Batesian Mimicry in the Pantropical Butterfly Hypolimnas misippus. Mol Biol Evol 2024; 41:msae041. [PMID: 38401262 PMCID: PMC10924252 DOI: 10.1093/molbev/msae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.
Collapse
Affiliation(s)
- Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Marek Kucka
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Ian J Gordon
- Centre of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | - Ivy Ng’iru
- Mpala Research Centre, Nanyuki 10400, Laikipia, Kenya
- School of Biosciences, Cardiff University, Cardiff CF 10 3AX, UK
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Eva S M van der Heijden
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, Spain
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | | | - Dino J Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Ffrench-Constant RH, Bennie J, Gordon IJ, Depew L, Smith DAS. Penetrance interactions of colour pattern loci in the African Monarch and their implications for the evolution of dominance. Ecol Evol 2024; 14:e11024. [PMID: 38414566 PMCID: PMC10898957 DOI: 10.1002/ece3.11024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024] Open
Abstract
Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.
Collapse
Affiliation(s)
| | - Jonathan Bennie
- Centre for Geography and Environmental Science University of Exeter Penryn UK
| | - Ian J Gordon
- Department of Biology, College of Science and Technology University of Rwanda Kigali Rwanda
| | | | | |
Collapse
|
12
|
Yang J, Xue H, Li Z, Zhang Y, Shi T, He X, Barrett SCH, Wang Q, Chen J. Haplotype-resolved genome assembly provides insights into the evolution of S-locus supergene in distylous Nymphoides indica. THE NEW PHYTOLOGIST 2023; 240:2058-2071. [PMID: 37717220 DOI: 10.1111/nph.19264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Distyly has evolved independently in numerous animal-pollinated angiosperm lineages. Understanding of its molecular basis has been restricted to a few species, primarily Primula. Here, we investigate the genetic architecture of the single diallelic locus (S-locus) supergene, a linkage group of functionally associated genes, and explore how it may have evolved in distylous Nymphoides indica, a lineage of flowering plants not previously investigated. We assembled haplotype-resolved genomes, used read-coverage-based genome-wide association study (rb-GWAS) to locate the S-locus supergene, co-expression network analysis to explore gene networks underpinning the development of distyly, and comparative genomic analyses to investigate the origins of the S-locus supergene. We identified three linked candidate S-locus genes - NinBAS1, NinKHZ2, and NinS1 - that were only evident in the short-styled morph and were hemizygous. Co-expression network analysis suggested that brassinosteroids contribute to dimorphic sex organs in the short-styled morph. Comparative genomic analyses indicated that the S-locus supergene likely evolved via stepwise duplications and has been affected by transposable element activities. Our study provides novel insight into the structure, regulation, and evolution of the supergene governing distyly in N. indica. It also provides high-quality genomic resources for future research on the molecular mechanisms underlying the striking evolutionary convergence in form and function across heterostylous taxa.
Collapse
Affiliation(s)
- Jingshan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Xue
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yue Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiangyan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Reid BN, Star B, Pinsky ML. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod ( Gadus morhua). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220190. [PMID: 37246382 DOI: 10.1098/rstb.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 05/30/2023] Open
Abstract
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Bastiaan Star
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| |
Collapse
|
14
|
Dagilis AJ, Matute DR. The fitness of an introgressing haplotype changes over the course of divergence and depends on its size and genomic location. PLoS Biol 2023; 21:e3002185. [PMID: 37459351 PMCID: PMC10374083 DOI: 10.1371/journal.pbio.3002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
The genomic era has made clear that introgression, or the movement of genetic material between species, is a common feature of evolution. Examples of both adaptive and deleterious introgression exist in a variety of systems. What is unclear is how the fitness of an introgressing haplotype changes as species diverge or as the size of the introgressing haplotype changes. In a simple model, we show that introgression may more easily occur into parts of the genome which have not diverged heavily from a common ancestor. The key insight is that alleles from a shared genetic background are likely to have positive epistatic interactions, increasing the fitness of a larger introgressing block. In regions of the genome where few existing substitutions are disrupted, this positive epistasis can be larger than incompatibilities with the recipient genome. Further, we show that early in the process of divergence, introgression of large haplotypes can be favored more than introgression of individual alleles. This model is consistent with observations of a positive relationship between recombination rate and introgression frequency across the genome; however, it generates several novel predictions. First, the model suggests that the relationship between recombination rate and introgression may not exist, or may be negative, in recently diverged species pairs. Furthermore, the model suggests that introgression that replaces existing derived variation will be more deleterious than introgression at sites carrying ancestral variants. These predictions are tested in an example of introgression in Drosophila melanogaster, with some support for both. Finally, the model provides a potential alternative explanation to asymmetry in the direction of introgression, with expectations of higher introgression from rapidly diverged populations into slowly evolving ones.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
16
|
Liu C, Smit SJ, Dang J, Zhou P, Godden GT, Jiang Z, Liu W, Liu L, Lin W, Duan J, Wu Q, Lichman BR. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. MOLECULAR PLANT 2023; 16:533-548. [PMID: 36609143 DOI: 10.1016/j.molp.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/09/2023]
Abstract
Biosynthetic gene clusters (BGCs) are regions of a genome where genes involved in a biosynthetic pathway are in proximity. The origin and evolution of plant BGCs as well as their role in specialized metabolism remain largely unclear. In this study, we have assembled a chromosome-scale genome of Japanese catnip (Schizonepeta tenuifolia) and discovered a BGC that contains multiple copies of genes involved in four adjacent steps in the biosynthesis of p-menthane monoterpenoids. This BGC has an unprecedented bipartite structure, with mirrored biosynthetic regions separated by 260 kilobases. This bipartite BGC includes identical copies of a gene encoding an old yellow enzyme, a type of flavin-dependent reductase. In vitro assays and virus-induced gene silencing revealed that this gene encodes the missing isopiperitenone reductase. This enzyme evolved from a completely different enzyme family to isopiperitenone reductase from closely related Mentha spp., indicating convergent evolution of this pathway step. Phylogenomic analysis revealed that this bipartite BGC has emerged uniquely in the S. tenuifolia lineage and through insertion of pathway genes into a region rich in monoterpene synthases. The cluster gained its bipartite structure via an inverted duplication. The discovered bipartite BGC for p-menthane biosynthesis in S. tenuifolia has similarities to the recently described duplicated p-menthane biosynthesis gene pairs in the Mentha longifolia genome, providing an example of the convergent evolution of gene order. This work expands our understanding of plant BGCs with respect to both form and evolution, and highlights the power of BGCs for gene discovery in plant biosynthetic pathways.
Collapse
Affiliation(s)
- Chanchan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Jingjie Dang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peina Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Licheng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
17
|
Chapuisat M. Evolution: A social parasite was born from a virgin. Curr Biol 2023; 33:R225-R228. [PMID: 36977384 DOI: 10.1016/j.cub.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The sudden appearance of small winged queens within a lineage of asexually reproducing ant workers reveals that such social parasites can appear abruptly. The parasitic queens differ in a large genomic region, suggesting that a supergene instantly equipped the social parasite with a suite of co-adapted traits.
Collapse
Affiliation(s)
- Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Campoy E, Puig M, Yakymenko I, Lerga-Jaso J, Cáceres M. Genomic architecture and functional effects of potential human inversion supergenes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210209. [PMID: 35694745 PMCID: PMC9189494 DOI: 10.1098/rstb.2021.0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supergenes are involved in adaptation in multiple organisms, but they are little known in humans. Genomic inversions are the most common mechanism of supergene generation and maintenance. Here, we review the information about two large inversions that are the best examples of potential human supergenes. In addition, we do an integrative analysis of the newest data to understand better their functional effects and underlying genetic changes. We have found that the highly divergent haplotypes of the 17q21.31 inversion of approximately 1.5 Mb have multiple phenotypic associations, with consistent effects in brain-related traits, red and white blood cells, lung function, male and female characteristics and disease risk. By combining gene expression and nucleotide variation data, we also analysed the molecular differences between haplotypes, including gene duplications, amino acid substitutions and regulatory changes, and identify CRHR1, KANLS1 and MAPT as good candidates to be responsible for these phenotypes. The situation is more complex for the 8p23.1 inversion, where there is no clear genetic differentiation. However, the inversion is associated with several related phenotypes and gene expression differences that could be linked to haplotypes specific of one orientation. Our work, therefore, contributes to the characterization of both exceptional variants and illustrates the important role of inversions. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Elena Campoy
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Illya Yakymenko
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Jon Lerga-Jaso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
19
|
Berdan EL, Flatt T, Kozak GM, Lotterhos KE, Wielstra B. Genomic architecture of supergenes: connecting form and function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210192. [PMID: 35694757 PMCID: PMC9189501 DOI: 10.1098/rstb.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L Berdan
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, MA 02747, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
20
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
21
|
Tafreshi AG, Otto SP, Chapuisat M. Unbalanced selection: the challenge of maintaining a social polymorphism when a supergene is selfish. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210197. [PMID: 35694754 PMCID: PMC9189496 DOI: 10.1098/rstb.2021.0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Supergenes often have multiple phenotypic effects, including unexpected detrimental ones, because recombination suppression maintains associations among co-adapted alleles but also allows the accumulation of recessive deleterious mutations and selfish genetic elements. Yet, supergenes often persist over long evolutionary periods. How are such polymorphisms maintained in the face of selection, drive and drift? We present a population genetic model that investigates the conditions necessary for a stable polymorphic equilibrium when one of the supergene haplotypes is a selfish genetic element. The model fits the characteristics of the Alpine silver ant, Formica selysi, in which a large supergene underlies colony social organization, and one haplotype distorts Mendelian transmission by killing progeny that did not inherit it. The model shows that such maternal-effect killing strongly limits the maintenance of social polymorphism. Under random mating, transmission ratio distortion prevents rare single-queen colonies from invading populations of multiple-queen colonies, regardless of the fitness of each genotype. A stable polymorphic equilibrium can, however, be reached when high rates of assortative mating are combined with large fitness differences among supergene genotypes. The model reveals that the persistence of the social polymorphism is non-trivial and expected to occur only under restrictive conditions that deserve further empirical investigation. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Alireza G Tafreshi
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Schaal SM, Haller BC, Lotterhos KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210200. [PMID: 35694752 PMCID: PMC9189506 DOI: 10.1098/rstb.2021.0200] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are FST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Sara M. Schaal
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| |
Collapse
|
23
|
Singh KS, De-Kayne R, Omufwoko KS, Martins DJ, Bass C, Ffrench-Constant R, Martin SH. Genome assembly of Danaus chrysippus and comparison with the Monarch Danaus plexippus. G3 (BETHESDA, MD.) 2022; 12:6491253. [PMID: 35100331 PMCID: PMC9210279 DOI: 10.1093/g3journal/jkab449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Milkweed butterflies in the genus Danaus are studied in a diverse range of research fields including the neurobiology of migration, biochemistry of plant detoxification, host–parasite interactions, evolution of sex chromosomes, and speciation. We have assembled a nearly chromosomal genome for Danaus chrysippus (known as the African Monarch, African Queen, and Plain Tiger) using long-read sequencing data. This species is of particular interest for the study of genome structural change and its consequences for evolution. Comparison with the genome of the North American Monarch Danaus plexippus reveals generally strong synteny but highlights 3 inversion differences. The 3 chromosomes involved were previously found to carry peaks of intraspecific differentiation in D. chrysippus in Africa, suggesting that these inversions may be polymorphic and associated with local adaptation. The D. chrysippus genome is over 40% larger than that of D. plexippus, and nearly all of the additional ∼100 Megabases of DNA comprises repeats. Future comparative genomic studies within this genus will shed light on the evolution of genome architecture.
Collapse
Affiliation(s)
- Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Dino J Martins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.,Mpala Research Centre, Nanyuki, P O Box 555 10400, Kenya
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | | | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|