1
|
Ferraretti G, Rill A, Abondio P, Smith K, Ojeda-Granados C, De Fanti S, Alberti M, Izzi M, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Dezi A, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Garagnani P, Peluzzi D, Luiselli D, Pettener D, Sarno S, Sazzini M. Convergent evolution of complex adaptive traits modulates angiogenesis in high-altitude Andean and Himalayan human populations. Commun Biol 2025; 8:377. [PMID: 40050470 PMCID: PMC11885840 DOI: 10.1038/s42003-025-07813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Convergent adaptations represent paradigmatic examples of the capacity of natural selection to influence organisms' biology. However, the possibility to investigate the genetic determinants underpinning convergent complex adaptive traits has been offered only recently by methods for inferring polygenic adaptations from genomic data. Relying on this approach, we demonstrate how high-altitude Andean human groups experienced pervasive selective events at angiogenic pathways, which resemble those previously attested for Himalayan populations despite partial convergence at the single-gene level was observed. This provides additional evidence for the drivers of convergent evolution of enhanced blood perfusion in populations exposed to hypobaric hypoxia for thousands of years.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Aina Rill
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Josep Carreras Leukaemia Research Institute, PhD Programme in Biomedicine, University of Barcelona, Barcelona, Spain
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Kyra Smith
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Alberti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Massimo Izzi
- Complex Operative Unit of Endocrinology and Diabetes Care, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | | | | | - Agnese Dezi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences & Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Luca Natali
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
- Italian Institute of Human Paleontology, Rome, Italy
| | - Angela Corcelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Peluzzi
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Front Physiol 2025; 16:1536165. [PMID: 40110186 PMCID: PMC11920174 DOI: 10.3389/fphys.2025.1536165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The transformation of normal breast cells into cancerous cells is a complex process influenced by both genetic and microenvironmental factors. Recent studies highlight the significant role of membrane potential (Vm) alterations in this transformation. Cancer cells typically exhibit a depolarized resting membrane potential (RMP) compared to normal cells, which correlates with increased cellular activity and more aggressive cancer behavior. These RMP and Vm changes are associated with altered ion channel activity, altered calcium dynamics, mitochondrial dysfunction, modified gap junction communication, and disrupted signaling pathways. Such fluctuations in RMP and Vm influence key processes in cancer progression, including cell proliferation, migration, and invasion. Notably, more aggressive subtypes of breast cancer cells display more frequent and pronounced Vm fluctuations. Understanding the electrical properties of cancer cells provides new insights into their behavior and offers potential therapeutic targets, such as ion channels and Vm regulation. This review synthesizes current research on how various factors modulate membrane potential and proposes an electrophysiological model of breast cancer cells based on experimental and clinical data from the literature. These findings may pave the way for novel pharmacological targets for clinicians, researchers, and pharmacologists in treating breast cancer.
Collapse
Affiliation(s)
| | - Arnaw Kishore
- Microbiology and Immunology, Xavier University School of Medicine, Aruba, Netherlands
| | - Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, VIVA Institute of Pharmacy, Virar, India
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Riad Azzam Kouzeiha
- Faculty of Medical Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Maher Ali Rusho
- Department of Biomedical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
3
|
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N, Xie LH. Potential Roles of IP 3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases. Biomolecules 2024; 14:1334. [PMID: 39456267 PMCID: PMC11506173 DOI: 10.3390/biom14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| |
Collapse
|
4
|
Zhang X, Zhou Y, Chang X, Wu Q, Liu Z, Liu R. Tongyang Huoxue decoction (TYHX) ameliorating hypoxia/reoxygenation-induced disequilibrium of calcium homeostasis via regulating β-tubulin in rabbit sinoatrial node cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117006. [PMID: 37544340 DOI: 10.1016/j.jep.2023.117006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE β-tubulin is a skeletal protein of sinoatrial node cells (SANCs) that maintains the physiological structure of SANCs and inhibits calcium overload. Tongyang Huoxue decoction (TYHX) is widely used to treat sick sinus syndrome (SSS) owing to its effects on calcium channels regulation and SANCs protection. AIM OF THE STUDY This study focuses on the mechanism of TYHX in improving the hypoxia/reoxygenation (H/R)-induced disequilibrium of calcium homeostasis in SANCs via regulating β-tubulin. MATERIALS AND METHODS Real-Time PCR (RT-PCR) and Western Blot were adopted to detect the mRNA and protein expression levels of calcium channel regulatory molecules. Laser confocal method was employed to examine β-tubulin structure and fluorescence expression levels in SANCs, as well as calcium wave and calcium release levels. RESULTS It was found that the fluorescence expression level decreased and the β-tubulin structure of SANCs was damaged after H/R treatment. The mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin decreased, while the mRNA and protein expression of RyR2 increased. The results of calcium wave and calcium transient experiments showed that the fluorescence expression level of Ca2+ increased and calcium overload occurred in SANCs. After treatment with TYHX, the mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin increased, while the mRNA and protein expression levels of RyR2 decreased and the cell structure was restored. Interestingly, the regulation of TYHX on calcium homeostasis was further enhanced after Ad-β-tubulin treatment and counteracted after siRNA-β-tubulin treatment. These results suggest that TYHX could maintain calcium homeostasis via regulating β-tubulin, thus protecting against H/R-induced SANCs injury, which may be a new target for SSS treatment.
Collapse
Affiliation(s)
- Xinai Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yutong Zhou
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Riuxiu Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Kanaporis G, Blatter LA. Increased Risk for Atrial Alternans in Rabbit Heart Failure: The Role of Ca 2+/Calmodulin-Dependent Kinase II and Inositol-1,4,5-trisphosphate Signaling. Biomolecules 2023; 14:53. [PMID: 38254653 PMCID: PMC10813785 DOI: 10.3390/biom14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) increases the probability of cardiac arrhythmias, including atrial fibrillation (AF), but the mechanisms linking HF to AF are poorly understood. We investigated disturbances in Ca2+ signaling and electrophysiology in rabbit atrial myocytes from normal and failing hearts and identified mechanisms that contribute to the higher risk of atrial arrhythmias in HF. Ca2+ transient (CaT) alternans-beat-to-beat alternations in CaT amplitude-served as indicator of increased arrhythmogenicity. We demonstrate that HF atrial myocytes were more prone to alternans despite no change in action potentials duration and only moderate decrease of L-type Ca2+ current. Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition suppressed CaT alternans. Activation of IP3 signaling by endothelin-1 (ET-1) and angiotensin II (Ang II) resulted in acute, but transient reduction of CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ load, and lowered the alternans risk. However, prolonged exposure to ET-1 and Ang II enhanced SR Ca2+ release and increased the degree of alternans. Inhibition of IP3 receptors prevented the transient ET-1 and Ang II effects and by itself increased the degree of CaT alternans. Our data suggest that activation of CaMKII and IP3 signaling contribute to atrial arrhythmogenesis in HF.
Collapse
Affiliation(s)
| | - Lothar A. Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
De Nicolo B, Cataldi-Stagetti E, Diquigiovanni C, Bonora E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants (Basel) 2023; 12:353. [PMID: 36829912 PMCID: PMC9952851 DOI: 10.3390/antiox12020353] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.
Collapse
Affiliation(s)
- Bianca De Nicolo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
9
|
Rajagopal V, Pinali C, Shiels HA. New revelations on the interplay between cardiomyocyte architecture and cardiomyocyte function in growth, health, and disease: a brief introduction. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210315. [PMID: 36189809 PMCID: PMC9527918 DOI: 10.1098/rstb.2021.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, Faculty of Engineering and IT, The University of Melbourne, Victoria 3010, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
10
|
Jin X, Amoni M, Gilbert G, Dries E, Doñate Puertas R, Tomar A, Nagaraju CK, Pradhan A, Yule DI, Martens T, Menten R, Vanden Berghe P, Rega F, Sipido K, Roderick HL. InsP 3R-RyR Ca 2+ channel crosstalk facilitates arrhythmias in the failing human ventricle. Basic Res Cardiol 2022; 117:60. [PMID: 36378362 DOI: 10.1007/s00395-022-00967-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated intracellular Ca2+ handling involving altered Ca2+ release from intracellular stores via RyR channels underlies both arrhythmias and reduced function in heart failure (HF). Mechanisms linking RyR dysregulation and disease are not fully established. Studies in animals support a role for InsP3 receptor Ca2+ channels (InsP3R) in pathological alterations in cardiomyocyte Ca2+ handling but whether these findings translate to the divergent physiology of human cardiomyocytes during heart failure is not determined. Using electrophysiological and Ca2+ recordings in human ventricular cardiomyocytes, we uncovered that Ca2+ release via InsP3Rs facilitated Ca2+ release from RyR and induced arrhythmogenic delayed after depolarisations and action potentials. InsP3R-RyR crosstalk was particularly increased in HF at RyR clusters isolated from the T-tubular network. Reduced SERCA activity in HF further facilitated the action of InsP3. Nanoscale imaging revealed co-localisation of InsP3Rs with RyRs in the dyad, which was increased in HF, providing a mechanism for augmented Ca2+ channel crosstalk. Notably, arrhythmogenic activity dependent on InsP3Rs was increased in tissue wedges from failing hearts perfused with AngII to promote InsP3 generation. These data indicate a central role for InsP3R-RyR Ca2+ signalling crosstalk in the pro-arrhythmic action of GPCR agonists elevated in HF and the potential for their therapeutic targeting.
Collapse
Affiliation(s)
- Xin Jin
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew Amoni
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Guillaume Gilbert
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Eef Dries
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Rosa Doñate Puertas
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ashutosh Tomar
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Chandan K Nagaraju
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ankit Pradhan
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, Medical Center School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Tobie Martens
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Roxane Menten
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Karin Sipido
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - H Llewelyn Roderick
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|