1
|
Huang L, Chen Z, Wen Q, Ji Y, Wu Z, Lee DJ. Toward flexible regulation of polyhydroxyalkanoate composition based on substrate feeding strategy: Insights into microbial community and metabolic features. BIORESOURCE TECHNOLOGY 2020; 296:122369. [PMID: 31732415 DOI: 10.1016/j.biortech.2019.122369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
The suitable feeding strategy considering both substrate preference (enrichment stage) and flexible regulation (PHA accumulation stage) were investigated, respectively, based on intracellular polymers synthesis peculiarities of the three types of cultures (M-Ac, M-Pr and M-Bu), which were enriched correspondingly using acetic type, propionic type and butyric type substrate. Compared to M-Ac and M-Bu cultures, maximum PHA content (PHAm) of M-Pr exhibited the most stable responses to varying fractions of propionic acid (fPr) of the substrate. The substrate composed of acetic acid and propionic acid (Mix-AP) demonstrated higher efficiency in regulation of polymer composition than that composed of butyric acid and propionic acid (Mix-BP). For the whole process of three-stage MC PHA production, propionic acid-dominated acidification products should be used for the long-term enrichment of PHA producers, and acidification products mainly composed of propionic and acetic acid are preferred considering the regulation of polymer composition in PHA accumulation stage.
Collapse
Affiliation(s)
- Long Huang
- School of Water Conservancy and Environment Engineering, Zhengzhou University, Zhengzhou 450002, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ye Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zening Wu
- School of Water Conservancy and Environment Engineering, Zhengzhou University, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
2
|
Tu W, Zhang D, Wang H. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: The link between phosphorus and PHA yields. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:149-157. [PMID: 31376958 DOI: 10.1016/j.wasman.2019.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Production of polyhydroxyalkanoates (PHA) from wastes has gained increasing attention for the related low costs and high environmental benefits. Phosphorus limitation is a potential strategy used to facilitate PHA production, yet excessive limitation was previously reported to cause negative effects. This study was the first to investigate the optimum phosphorus limitation for PHA accumulation from thermal-hydrolyzed sludge. The results showed that the maximum PHA content increased from 23 wt% to 51 wt% when phosphorus concentration was limited from 127.60 to 1.35 mg/L, indicating that a lower phosphorus concentration would promote maximum PHA accumulation. Batch tests performed with synthetic substrates (containing one specific VFA for each batch) confirmed that the effect of phosphorus content on PHA production was mainly devoted by the efficiency of the conversion of acetate to PHA. The PHA yields on acetate (YPHA/ac) were 0.68 and 0.05 Cmol/Cmol under phosphorus-limited (1 mg/L) and -excess (100 mg/L) conditions, respectively. A mathematical model was developed to describe the correlation between phosphorus concentration and YPHA/ac, which can fit the experimental data and predict the results properly. Finally, further (ammonium-) nitrogen restriction did not efficiently cause the additional improvement of PHA production under the conditions of phosphorus limitation.
Collapse
Affiliation(s)
- Weiming Tu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dandan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Arnold S, Moss K, Henkel M, Hausmann R. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy. Trends Biotechnol 2017; 35:925-936. [DOI: 10.1016/j.tibtech.2017.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
|
4
|
|
5
|
Jang YS, Malaviya A, Lee SY. Acetone-butanol-ethanol production with high productivity usingClostridium acetobutylicumBKM19. Biotechnol Bioeng 2013; 110:1646-53. [DOI: 10.1002/bit.24843] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 01/07/2023]
|
6
|
Physiological characterisation of acuB deletion in Aspergillus niger. Appl Microbiol Biotechnol 2009; 84:157-67. [PMID: 19444441 DOI: 10.1007/s00253-009-2027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.
Collapse
|
7
|
Transient marker system for iterative gene targeting of a prototrophic fungus. Appl Environ Microbiol 2007; 73:7240-5. [PMID: 17921280 DOI: 10.1128/aem.01839-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Auxotrophic microorganisms are often used for genetic engineering, because their biosynthetic deficiency can be complemented by the transforming DNA and allows selection for transformants that have become prototrophic. However, when complementation is obtained by ectopic expression this may lead to unpredictable side effects on the phenotype and, consequently, misinterpretation of experimental data. There are various ways to overcome the problem of auxotrophy, but the most reliable is to restore the function of the defective biosynthetic gene at the native genomic locus. This can be done by either sexual crossing or further genetic engineering. For fungal species lacking a perfect state or situations in which gene targeting is generally cumbersome we have developed a concept that allows transient disruption of pyrG. When the gene is in the disrupted state, multiple rounds of gene targeting can be performed with the strain. Once the desired genome engineering is completed, pyrG function can be rapidly returned to wild type by a simple selection scheme.
Collapse
|
8
|
Sakai S, Nishide T, Munir E, Baba K, Inui H, Nakano Y, Hattori T, Shimada M. Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Microbiology (Reading) 2006; 152:1857-1866. [PMID: 16735748 DOI: 10.1099/mic.0.28702-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the subcellular localization of key enzymes of the glyoxylate cycle, i.e. isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (EC 2.3.3.9), that function constitutively in coordination with oxalate biosynthesis of glucose-grownFomitopsis palustris. The ICL purified previously fromF. palustrisis termed FPICL1. Subcellular fractionation analysis of the cell homogenate by the sucrose density-gradient method showed that both key enzymes were present in peroxisomes, whereas acetyl-CoA synthase (EC 6.2.1.1) and oxalate-producing oxaloacetate acetylhydrolase (EC 3.7.1.1) were cytosolic. The peroxisomal localization of FPICL1 was further confirmed by electron microscopic and immunocytochemical analysis with anti-FPICL1 antibody. In addition, the peroxisomal target signal, composed of SKL at the C terminus of the cDNA encoding FPICL1, was found, which also suggests that FPICL1 is peroxisomal. Accordingly, it is postulated that transportation of succinate from peroxisomes to mitochondria, and vice versa, for the transportation of isocitrate or citrate, occurs in glucose-grownF. palustrisfor the constitutive metabolic coordination of the TCA and glyoxylate cycles with oxalate biosynthesis.
Collapse
Affiliation(s)
- Shunsuke Sakai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsunori Nishide
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Erman Munir
- University of North Sumatra, Jl. Bioteknologi No. 1 Kampus USU, Medan 20513, Indonesia
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, University of Osaka Prefecture, Sakai, Osaka 599-8231, Japan
| | - Yoshihisa Nakano
- Department of Applied Biological Chemistry, University of Osaka Prefecture, Sakai, Osaka 599-8231, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mikio Shimada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Horswill AR, Dudding AR, Escalante-Semerena JC. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 2001; 276:19094-101. [PMID: 11376009 DOI: 10.1074/jbc.m100244200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica serovar Typhimurium LT2 showed increased sensitivity to propionate when the 2-methylcitric acid cycle was blocked. A derivative of a prpC mutant (which lacked 2-methylcitrate synthase activity) resistant to propionate was isolated, and the mutation responsible for the newly acquired resistance to propionate was mapped to the citrate synthase (gltA) gene. These results suggested that citrate synthase activity was the source of the increased sensitivity to propionate observed in the absence of the 2-methylcitric acid cycle. DNA sequencing of the wild-type and mutant gltA alleles revealed that the ATG start codon of the wild-type gene was converted to the rare GTG start codon in the revertant strain. This result suggested that lower levels of this enzyme were present in the mutant. Consistent with this change, cell-free extracts of the propionate-resistant strain contained 12-fold less citrate synthase activity. This was interpreted to mean that, in the wild-type strain, high levels of citrate synthase activity were the source of a toxic metabolite. In vitro experiments performed with homogeneous citrate synthase enzyme indicated that this enzyme was capable of synthesizing 2-methylcitrate from propionyl-CoA and oxaloacetate. This result lent further support to the in vivo data, which suggested that citrate synthase was the source of a toxic metabolite.
Collapse
Affiliation(s)
- A R Horswill
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1567, USA
| | | | | |
Collapse
|
10
|
Ruijter GJG, van de Vondervoort PJI, Visser J. Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2569-2576. [PMID: 10517610 DOI: 10.1099/00221287-145-9-2569] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The external pH appeared to be the main factor governing oxalic acid production by Aspergillus niger. A glucose-oxidase-negative mutant produced substantial amounts of oxalic acid as long as the pH of the culture was 3 or higher. When pH was decreased below 2, no oxalic acid was formed. The activity of oxaloacetate acetylhydrolase (OAH), the enzyme believed to be responsible for oxalate formation in A. niger, correlated with oxalate production. OAH was purified from A. niger and characterized. OAH cleaves oxaloacetate to oxalate and acetate, but A. niger never accumulated any acetate in the culture broth. Since an A. niger acuA mutant, which lacks acetyl-CoA synthase, did produce some acetate, wild-type A. niger is apparently able to catabolize acetate sufficiently fast to prevent its production. An A. niger mutant, prtF28, previously isolated in a screen for strains deficient in extracellular protease expression, was shown here to be oxalate non-producing. The prtF28 mutant lacked OAH, implying that OAH is the only enzyme involved in oxalate production in A. niger. In a traditional citric acid fermentation low pH and absence of Mn2+ are prerequisites. Remarkably, a strain lacking both glucose oxidase (goxC) and OAH (prtF) produced citric acid from sugar substrates in a regular synthetic medium at pH 5 and under these conditions production was completely insensitive to Mn2+.
Collapse
Affiliation(s)
- George J G Ruijter
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands1
| | - Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands1
| | - Jaap Visser
- Section Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands1
| |
Collapse
|
11
|
Papadopoulou S, Sealy-Lewis HM. The Aspergillus niger acuA and acuB genes correspond to the facA and facB genes in Aspergillus nidulans. FEMS Microbiol Lett 1999; 178:35-7. [PMID: 10483720 DOI: 10.1111/j.1574-6968.1999.tb13756.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene.
Collapse
Affiliation(s)
- S Papadopoulou
- Department of Biological Sciences, University of Hull, UK
| | | |
Collapse
|