1
|
Han KK, Zhou Q, Tian M, Li YN, Zhang JY, Zhang YW. Cloning, heterologous expression, and molecular characterization of a highly active and stable non-specific endonuclease from Pseudomonas fluorescens. Arch Microbiol 2024; 206:125. [PMID: 38411841 DOI: 10.1007/s00203-024-03867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Non-specific endonucleases can be used for the digestion of nucleic acids because they hydrolyze DNA/RNA into 3-5 base pairs (bp) length oligonucleotide fragments without strict selectivity. In this work, a novel non-specific endonuclease from Pseudomonas fluorescens (PfNuc) with high activities for both DNA and RNA was successfully cloned and expressed in Escherichia coli. The production of PfNuc in flask scale could be achieved to 1.73 × 106 U/L and 4.82 × 106 U/L for DNA and RNA by investigation of the culture and induction conditions. The characterization of PfNuc indicated that it was Mg2+-dependent and the catalytic activity was enhanced by 3.74 folds for DNA and 1.06 folds for RNA in the presence of 5 mM Mg2+. The specific activity of PfNuc for DNA was 1.44 × 105 U/mg at pH 8.0 and 40 °C, and 3.93 × 105 U/mg for RNA at pH 8.5 and 45 °C. The Km of the enzyme for both DNA and RNA was close to 43 µM. The Vmax was 6.40 × 105 U/mg and 1.11 × 106 U/mg for DNA and RNA, respectively. There was no observed activity loss when PfNuc was stored at 4 °C and - 20 °C after 28 days or 10 repeated freeze-thaw cycles at - 80 °C. Molecular docking revealed that PfNuc formed 17 and 19 hydrogen bonds with single-stranded RNA and double-stranded DNA, respectively. These results could explain the high activity and stability of PfNuc, suggesting its great potential applications in the industry and clinic.
Collapse
Affiliation(s)
- Ke-Ke Han
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qiang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Miao Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing-Yi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
2
|
Ge Y, Guo S, Liu T, Zhao C, Li D, Liu Y, Li J, Liang T, Wang L. Optimizing a production strategy for a nonspecific nuclease from Yersinia enterocolitica subsp. palearctica in genetically engineered Escherichia coli. FEMS Microbiol Lett 2019; 366:5652194. [PMID: 31800029 DOI: 10.1093/femsle/fnz208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/03/2019] [Indexed: 11/14/2022] Open
Abstract
A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.
Collapse
Affiliation(s)
- Yan Ge
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Senlin Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Tao Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chen Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Duanhua Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yangchang Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Jinjun Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Tao Liang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Lu Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,International Phage Drug Research Center, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Schmitz S, Wieczorek M, Nölle V, Elleuche S. Characterization of Single Amino Acid Variations in an EDTA-Tolerating Non-specific Nuclease from the Ice-Nucleating Bacterium Pseudomonas syringae. Mol Biotechnol 2019; 62:67-78. [PMID: 31749083 DOI: 10.1007/s12033-019-00229-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Non-specific nuclease (NSN) can be applied in industrial downstream processing to remove nucleic acids from crude protein extracts or in cell-sorting systems to degrade nucleic acids derived from lysed cells. PsNuc from the ice-nucleating bacterium Pseudomonas syringae has the ability to decompose double- and single-stranded DNA in linear or circular form and RNA. It is not affected by the presence of metal-ion chelators such as EDTA and tolerates several protease inhibitors and reducing agents. A multiple sequence alignment of PsNuc with closely related enzymes (97-99% identity on the protein level) within the family Pseudomonaceae revealed the presence of only six amino acid residues that are variable in putative NSN from different members of the genus Pseudomonas. Single amino acid variants were produced in recombinant form in Escherichia coli, purified, and characterized. They showed similar activity compared to PsNuc, but a single variant even displayed an improved performance with an activity of > 20,000 U/mg at 35 °C, while amino acid residues S148 and V161 were found to be essential for enzymatic functionality. These results suggest that homologous nucleases from Pseudomonaceae display high activity levels in a metal-ion-independent manner and are therefore of interest for applications in biotechnology.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
4
|
Decoding Essential Amino Acid Residues in the Substrate Groove of a Non-Specific Nuclease from Pseudomonas syringae. Catalysts 2019. [DOI: 10.3390/catal9110941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-specific nucleases (NSN) are of interest for biotechnological applications, including industrial downstream processing of crude protein extracts or cell-sorting approaches in microfabricated channels. Bacterial nucleases belonging to the superfamily of phospholipase D (PLD) are featured for their ability to catalyze the hydrolysis of nucleic acids in a metal-ion-independent manner. In order to gain a deeper insight into the composition of the substrate groove of a NSN from Pseudomonas syringae, semi-rational mutagenesis based on a structure homology model was applied to identify amino acid residues on the protein’s surface adjacent to the catalytic region. A collection of 12 mutant enzymes each with a substitution to a positively charged amino acid (arginine or lysine) was produced in recombinant form and biochemically characterized. Mutations in close proximity to the catalytic region (inner ring) either dramatically impaired or completely abolished the enzymatic performance, while amino acid residues located at the border of the substrate groove (outer ring) only had limited or no effects. A K119R substitution mutant displayed a relative turnover rate of 112% compared to the original nuclease. In conclusion, the well-defined outer ring of the substrate groove is a potential target for modulation of the enzymatic performance of NSNs belonging to the PLD superfamily.
Collapse
|
5
|
Schmitz S, Börner P, Nölle V, Elleuche S. Comparative analysis of two non-specific nucleases of the phospholipase D family from the plant pathogen competitor bacterium Pantoea agglomerans. Appl Microbiol Biotechnol 2019; 103:2635-2648. [PMID: 30685815 DOI: 10.1007/s00253-019-09644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/28/2022]
Abstract
Bacterial non-specific nucleases of the phospholipase D family are widely distributed among the members of the Enterobacteriaceae. Each genome mainly contains a single copy of a gene encoding a phospholipase D family protein. However, two distantly related isozymes (< 40% identity at the protein level) were identified by BLAST-analyses in the plant pathogenic competitor enterobacterium Pantoea agglomerans. The two nucleases PaNuc-1 and PaNuc-2 were produced in Escherichia coli. Identical gene constructs and expression conditions resulted in the production of PaNuc-1 in soluble form, while PaNuc-2 remained insoluble in inclusion bodies. PaNuc-2 was refolded and both proteins were purified by a combination of affinity and ion exchange chromatography. Proteolytic removal of the HIS-tag allowed the characterization of pure and mature tag-less proteins. Enzymatic properties of both isozymes revealed that they are non-specific nucleases, displaying activities against RNA, single- and double-stranded genomic DNA as well as circular plasmids. However, their biochemical activity profiles were clearly different, with PaNuc-1 being optimally active at 70 °C and pH 7.0, while PaNuc-2 was most active at 45 °C and pH 7.0. The enzymes retained > 90% nuclease activity at EDTA concentrations of 4 mM (PaNuc-2) and 20 mM (PaNuc-1), respectively. Different enzymatic properties suggest that the roles of PaNuc-1 and PaNuc-2 differ in the cell and might be the result of functional diversification after an ancient gene duplication event took place. The fact that both enzymes could be easily produced in recombinant form and their tolerance against metal ion chelators in combination with a broad substrate promiscuity might pave the way to versatile biotechnological applications.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Paul Börner
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
6
|
Schmitz S, Nölle V, Elleuche S. A non-specific nucleolytic enzyme and its application potential in EDTA-containing buffer solutions. Biotechnol Lett 2018; 41:129-136. [PMID: 30390191 DOI: 10.1007/s10529-018-2618-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Metal-ion independent non-specific nucleases are of high potential for applications in EDTA-containing bioprocessing workflows. RESULTS A novel extracellular non-specific nuclease EcNuc from the enterobacterium Escherichia coli has been identified. The recombinant gene was expressed and the protein was purified. Maximum activity of the enzyme was detected at 41.7 °C and at an acidic pH of 5.8. EcNuc tolerates EDTA in the reaction buffer at concentrations of up to 20 mM and the activity is not impaired by high concentrations of mono- and divalent metal ions in the absence of EDTA. The viscosity of crude protein extracts after cell lysis in EDTA-containing buffers is reduced when supplemented with EcNuc. CONCLUSION Proof-of-concept has been demonstrated that a metal-ion independent non-specific nuclease can be applied for removal of nucleic acids in EDTA-containing buffers for the subsequent purification of proteins from crude extracts.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
7
|
Zhang Y, Chen T, Zheng W, Li ZH, Ying RF, Tang ZX, Shi LE. Active sites and thermostability of a non-specific nuclease from Yersinia enterocoliticasubsp . palearcticaby site-directed mutagenesis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1489738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yu Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Tao Chen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Zhen Hua Li
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Rui-Feng Ying
- Department of Food Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China
| | - Zhen-Xing Tang
- Hangzhou Tianlong Group Co. Ltd, Hangzhou, Zhejiang, PR China
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
8
|
Dalgliesh AJ, Liu ZZ, Griffiths LG. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering. Tissue Eng Part A 2017; 23:609-621. [PMID: 28178887 DOI: 10.1089/ten.tea.2016.0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Collapse
Affiliation(s)
- Ailsa J Dalgliesh
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California.,2 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Zhi Zhao Liu
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California
| | - Leigh G Griffiths
- 1 Department of Veterinary Medicine, Medicine and Epidemiology, University of California , Davis, Davis, California.,2 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
9
|
Lyu ZZ, Zhao BB, Koiwai K, Hirono I, Kondo H. Identification of endonuclease domain-containing 1 gene in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:43-49. [PMID: 26784919 DOI: 10.1016/j.fsi.2016.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The mRNA level of the endonuclease domain-containing 1 gene (Jf_ENDOD1) in Japanese flounder Paralichthys olivaceus kidney was significantly increased after injection of formalin-killed bacteria cells (FKC) in the previous microarray study. ENDOD1 is a member of the DNA/RNA non-specific nucleases family, and its role in fish immunity has not been reported. The open reading frame of Jf_ENDOD1 cDNA was 912 bp, encoding 303 amino acids. The first 27 amino acids were predicted to be a signal peptide and the mature Jf_ENDOD1 was calculated as 32 kDa. The amino acid sequence of Jf_ENDOD1 showed 76% identity to that of large yellow croaker Larimichthys crocea. Transcripts of Jf_ENDOD1 were marginally detected in all sampled tissues from healthy fish, while they were significantly detected in brain, kidney, spleen and intestine at 6 h post FKC injection. Jf_ENDOD1 recombinant protein produced in Escherichia coli showed DNase activity. Furthermore, to evaluate the DNase activities in vivo, total proteins from Japanese flounder kidney and spleen were extracted at 12, 24 and 72 h post Edwardsiella tarda FKC injection. The DNase activity of extracted protein was higher in treated fish than in untreated fish. Since the mRNA levels were significantly up-regulated after the FKC treatment, Jf_ENDOD1 might be responsible for the activities.
Collapse
Affiliation(s)
- Zhe-Zhe Lyu
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Bei-Bei Zhao
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
10
|
Dang G, Cao J, Cui Y, Song N, Chen L, Pang H, Liu S. Characterization of Rv0888, a Novel Extracellular Nuclease from Mycobacterium tuberculosis. Sci Rep 2016; 6:19033. [PMID: 26742696 PMCID: PMC4733049 DOI: 10.1038/srep19033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial extracellular nucleases play important roles in virulence, biofilm formation, utilization of extracellular DNA as a nutrient, and degradation of neutrophil DNA extracellular traps. However, there is no current data available for extracellular nucleases derived from M. tuberculosis. Herein, we have identified and characterized Rv0888, an extracellular nuclease in M. tuberculosis. The protein was overexpressed in E. coli, and the purified Rv0888 protein was found to require divalent cations for activity, with an optimal temperature and pH of 41 °C and 6.5, respectively. Further results demonstrated that Rv0888 nuclease activity could be inhibited by four Chinese medicine monomers. Based on sequence analysis, Rv0888 nuclease exhibited no homology with any known extracellular nucleases, indicating that Rv0888 is a novel nuclease. Site-directed mutagenesis studies revealed that the H353, D387, and D438 residues play catalytic roles in Rv0888. In vivo infection studies confirmed that Rv0888 is required for infection and is related to pathogenicity, as the persistent ability of recombinant Mycobacterium smegmatis (rMS) Rv0888NS/MS and Rv0888S/MS is significantly higher than pMV262/MS in the lung tissue, and the Rv0888NS/MS and Rv0888S/MS could produce pathological changes in the mice lung. These results show that Rv0888 is relevant to pathogenicity of M. tuberculosis.
Collapse
Affiliation(s)
- Guanghui Dang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| | - Jun Cao
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| | - Yingying Cui
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| | - Ningning Song
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| | - Liping Chen
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| | - Hai Pang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang Dist, Harbin 15000, PR China
| |
Collapse
|
11
|
Fang XJ, Tang ZX, Li ZH, Zhang ZL, Shi LE. Production of a new non-specific nuclease from Yersinia enterocolitica subsp. palearctica: optimization of induction conditions using response surface methodology. BIOTECHNOL BIOTEC EQ 2014; 28:559-566. [PMID: 26019543 PMCID: PMC4433914 DOI: 10.1080/13102818.2014.915612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/27/2013] [Indexed: 01/16/2023] Open
Abstract
A new non-specific nuclease from Yersinia enterocolitica subsp. palearctica (Y. NSN) was expressed in Escherichia coli (E. coli) BL 21 StarTM (DE3)plysS. Induction conditions, including isopropyl-β-D-thiogalactoside (IPTG) concentration, cell density (OD600), induction time and induction temperature, were optimized using response surface methodology. Statistical analysis of the results revealed that induction temperature and all the quadratic terms of variables had significant effects on enzyme activity of Y. NSN. The optimal induction conditions were as follows: 1.5 mmol/L IPTG, OD600 of 0.80, induction time of 20.5 h, and induction temperature of 32 °C. Under the optimized conditions, the highest enzyme activity could be obtained.
Collapse
Affiliation(s)
- Xiu-Juan Fang
- College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou , Zhejiang , P.R. China
| | - Zhen-Xing Tang
- College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou , Zhejiang , P.R. China ; Date Palm Research Center, King Faisal University , Al-hasa , Saudi Arabia ; Department of Food Science, Anqing Vocational & Technical College , Anqing , Anhui , P.R. China
| | - Zhen-Hua Li
- College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou , Zhejiang , P.R. China
| | - Zhi-Liang Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou , Zhejiang , P.R. China
| | - Lu-E Shi
- College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou , Zhejiang , P.R. China
| |
Collapse
|
12
|
Gorniak JP, Cameron KM, Waldron KJ, von Zglinicki T, Mathers JC, Langie SAS. Tissue differences in BER-related incision activity and non-specific nuclease activity as measured by the comet assay. Mutagenesis 2013; 28:673-81. [PMID: 24097409 DOI: 10.1093/mutage/get047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA repair mechanisms are important for genome stability and to prevent accumulation of DNA damage, which contributes to cellular ageing and cancer development. Study of these physiological processes requires robust and practical assays to quantify DNA repair capacity. The in vitro comet-based assay is a simple, yet reliable, assay for measurement of DNA repair and has been modified recently to quantify DNA incision activity in mouse brain and liver. In this study, we applied this assay to assess DNA incision activity in other mouse tissues, i.e. lung and colon, and found that high, non-specific nuclease activity was a problem when measuring DNA incision activity, especially in the colon. We tested the utility of multiple optimisation steps including addition of aphidicolin, ATP and polyAT and used multiple wash steps, which resulted in modest improvements in performance of the assay. Washing the tissues before protein extraction and decreasing the protein concentration in the assay were the most effective steps in reducing non-specific nuclease activity. Using the comet-based assay with these further modifications, we found that base excision repair incision activity changed with age differently in each tissue. This study shows that non-specific nuclease activity in the comet-based assay for DNA repair is more pronounced in some tissues than others so care should be taken to optimise the protocol when applying the assay to a new tissue. Our data suggest the importance of using control cells (noRo cells incubated with extract) in the assay to assess for non-specific nuclease activity. In conclusion, the comet-based DNA repair assay can be easily adapted to study a range of mammalian tissues.
Collapse
Affiliation(s)
- Joanna P Gorniak
- Centre for Brain Ageing and Vitality, Human Nutrition Research Centre, Institute for Ageing & Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | | | | | | | | | | |
Collapse
|
13
|
Song Q, Zhang X. Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnol 2008; 8:43. [PMID: 18439318 PMCID: PMC2390534 DOI: 10.1186/1472-6750-8-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/28/2008] [Indexed: 11/25/2022] Open
Abstract
Background Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time. Results After recombinant expression in Escherichia coli, the purified GBSV1-NSN exhibited non-specific nuclease activity, being able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Based on sequence analysis, the nuclease shared no homology with any known nucleases, suggesting that it was a novel nuclease. The characterization of the recombinant GBSV1-NSN showed that its optimal temperature and pH were 60°C and 7.5, respectively. The results indicated that the enzymatic activity was inhibited by enzyme inhibitors or detergents, such as ethylene diamine tetraacetic acid, citrate, dithiothreitol, β-mercaptoethanol, guanidine hydrochloride, urea and SDS. In contrast, the nuclease activity was enhanced by TritonX-100, Tween-20 or chaps to approximately 124.5% – 141.6%. The Km of GBSV1-NSN nuclease was 231, 61 and 92 μM, while its kcat was 1278, 241 and 300 s-1 for the cleavage of dsDNA, ssDNA and RNA, respectively. Conclusion Our study, therefore, presented a novel thermostable non-specific nuclease from thermophilic bacteriophage and its overexpression and purification for scientific research and applications.
Collapse
Affiliation(s)
- Qing Song
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, The People's Republic of China.
| | | |
Collapse
|
14
|
Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 2007; 74:987-93. [PMID: 18156324 DOI: 10.1128/aem.02514-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.
Collapse
|
15
|
Altermark B, Niiranen L, Willassen NP, Smalås AO, Moe E. Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae. FEBS J 2007; 274:252-63. [PMID: 17222185 DOI: 10.1111/j.1742-4658.2006.05580.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endonuclease I is a periplasmic or extracellular enzyme present in many different Proteobacteria. The endA gene encoding endonuclease I from the psychrophilic and mildly halophilic bacterium Vibrio salmonicida and from the mesophilic brackish water bacterium Vibrio cholerae have been cloned, over-expressed in Escherichia coli, and purified. A comparison of the enzymatic properties shows large differences in NaCl requirements, optimum pH, temperature stability and catalytic efficiency of the two proteins. The V. salmonicida EndA shows typical cold-adapted features such as lower unfolding temperature, lower temperature optimum for activity, and higher specific activity than V. cholerae EndA. The thermodynamic activation parameters confirm the psychrophilic nature of V. salmonicida EndA with a much lower activation enthalpy. The optimal conditions for enzymatic activity coincide well with the corresponding optimal requirements for growth of the organisms, and the enzymes function predominantly as DNases at physiological concentrations of NaCl. The periplasmic or extracellular localization of the enzymes, which renders them constantly exposed to the outer environment of the cell, may explain this fine-tuning of biochemical properties.
Collapse
Affiliation(s)
- Bjørn Altermark
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
16
|
Nagano K, Read EK, Murakami Y, Masuda T, Noguchi T, Yoshimura F. Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J Bacteriol 2005; 187:902-11. [PMID: 15659668 PMCID: PMC545718 DOI: 10.1128/jb.187.3.902-911.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major outer membrane proteins Pgm6 (41 kDa) and Pgm7 (40 kDa) of Porphyromonas gingivalis ATCC 33277 are encoded by open reading frames pg0695 and pg0694, respectively, which form a single operon. Pgm6 and Pgm7 (Pgm6/7) have a high degree of similarity to Escherichia coli OmpA in the C-terminal region and are predicted to form eight-stranded beta-barrels in the N-terminal region. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Pgm6/7 appear as bands with apparent molecular masses of 40 and 120 kDa, with and without a reducing agent, suggesting a monomer and trimer, respectively. To verify the predicted trimeric structure and function of Pgm6/7, we constructed three mutants with pg0695, pg0694, or both deleted. The double mutant produced no Pgm6/7. The single-deletion mutants appeared to contain less Pgm7 and Pgm6 and to form homotrimers that migrated slightly faster (115 kDa) and slower (130 kDa), respectively, than wild-type Pgm6/7 under nonreducing conditions. N-terminal amino acid sequencing and mass spectrometry analysis of partially digested Pgm6/7 detected only fragments from Pgm6 and Pgm7. Two-dimensional, diagonal electrophoresis and chemical cross-linking experiments with or without a reducing agent clearly showed that Pgm6/7 mainly form stable heterotrimers via intermolecular disulfide bonds. Furthermore, growth retardation and arrest of the three mutants and increased permeability of their outer membranes indicated that Pgm6/7 play an important role in outer membrane integrity. Based on results of liposome swelling experiments, these proteins are likely to function as a stabilizer of the cell wall rather than as a major porin in this organism.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | | | | | | | | | | |
Collapse
|