1
|
New two-component regulatory system required for the constitutive expression of bph operon in Cupriavidus basilensis WS. Appl Microbiol Biotechnol 2019; 103:3099-3109. [DOI: 10.1007/s00253-019-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
2
|
Payne RB, Ghosh U, May HD, Marshall CW, Sowers KR. A Pilot-Scale Field Study: In Situ Treatment of PCB-Impacted Sediments with Bioamended Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2626-2634. [PMID: 30698958 DOI: 10.1021/acs.est.8b05019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m2 plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.5 cm by up to 52% and the aqueous concentrations of tri- to nonachlorobiphenyl PCB congeners by as much as 95%. Coplanar congeners decreased by up to 80% in sediment and were undetectable in the porewater. There was no significant decrease in PCB concentrations in non-bioamended plots with or without AC. All homologue groups decreased in bioamended sediment and porewater, indicating that both anaerobic dechlorination and aerobic degradation occurred concurrently. The titer of the bioamendments based on quantitative PCR of functional marker genes decreased but were still detectable after 409 days, whereas indigenous microbial diversity was not significantly different between sites, time points, or depths, indicating that bioaugmentation and the addition of activated carbon did not significantly alter total microbial diversity. In situ treatment of PCBs using an AC agglomerate as a delivery system for bioamendments is particularly well-suited for environmentally sensitive sites where there is a need to reduce exposure of the aquatic food web to sediment-bound PCBs with minimal disruption to the environment.
Collapse
Affiliation(s)
- Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore Maryland 21202 , United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering , University of Maryland Baltimore County , Baltimore Maryland 21250 , United States
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology , Medical University of South Carolina , Charleston South Carolina 29412 , United States
| | - Christopher W Marshall
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore Maryland 21202 , United States
| |
Collapse
|
3
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Payne RB, Ghosh U, May HD, Marshall CW, Sowers KR. Mesocosm Studies on the Efficacy of Bioamended Activated Carbon for Treating PCB-Impacted Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10691-10699. [PMID: 28809549 DOI: 10.1021/acs.est.7b01935] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This report describes results of a bench-scale treatability study to evaluate the efficacy of bioaugmentation with bioamended activated carbon (AC) for in situ treatment of polychlorinated biphenyl (PCB) impacted sediments. To this end, the ability of PCB transforming microorganisms to degrade and reduce the overall concentration of PCBs in sediment was determined in 2 L recirculating mesocosms designed to simulate conditions in Abraham's Creek in Quantico, Virginia. Ten sediment mesocosms were tested for the effects of AC alone, AC with slow release electron donor (cellulose) and different concentrations and combinations of PCB dehalogenating and degrading microorganisms added as bioamendments. A 78% reduction of total PCBs was observed using a cell titer of 5 × 105 Dehalobium chlorocoercia and Paraburkholderia xenovorans cells g-1 sediment with 1.5% AC as a delivery system. Levels of both higher and lower chlorinated congeners were reduced throughout the sediment column indicating that both anaerobic reductive dechlorination and aerobic degradation occurred concurrently. Porewater concentrations of all PCB homologues were reduced 94-97% for bioaugmented treatments. Toxicity associated with coplanar PCBs was reduced by 90% after treatment based on toxic equivalency of dioxin-like congeners. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms on AC could be an effective, environmentally sustainable strategy to reduce PCB levels in contaminated sediment.
Collapse
Affiliation(s)
- Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Harold D May
- Marine Biomedicine and Environmental Science Center, Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Christopher W Marshall
- Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| |
Collapse
|
5
|
Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400. PLoS One 2013; 8:e75746. [PMID: 24124510 PMCID: PMC3790839 DOI: 10.1371/journal.pone.0075746] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
2-aminophenol (2-AP) is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA (-) mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA), a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid.
Collapse
|
6
|
Hernández-Sánchez V, Lang E, Wittich RM. The Three-Species Consortium of Genetically Improved Strains Cupriavidus necator RW112, Burkholderia xenovorans RW118, and Pseudomonas pseudoalcaligenes RW120 Grows with Technical Polychlorobiphenyl, Aroclor 1242. Front Microbiol 2013; 4:90. [PMID: 23658554 PMCID: PMC3647243 DOI: 10.3389/fmicb.2013.00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Burkholderia xenovorans LB400, Cupriavidus necator H850, and Pseudomonas pseudoalcaligenes KF707 are bacterial strains able to mineralize biphenyl and to co-oxidize many of its halogenated derivatives (PCBs). Only strain LB400 also mineralizes a few mono- and dichlorobiphenyls, due to the presence of a functioning chlorocatechol pathway. Here, we used a Tn5-based minitransposon shuttle system to chromosomically introduce genes tcbRCDEF, encoding the chlorocatechol pathway into KF707, and genes cbdABC encoding a 2-chlorobenzoate 1,2-dioxygenase into KF707 and LB400, as well as transposon Tn4653 from the TOL plasmid, providing genes xylXYZL, encoding a broad-range toluate (methylbenzoate) dioxygenase and its dihydrodiol dehydrogenase, to extend the range for the mineralization of halogenated benzoates in LB400 and in KF707 through co-oxidation of halobenzoates into chlorocatechols. The engineered derivatives of LB400 and KF707 thus gained the ability for the mineralization of all isomeric monochloro- and bromobenzoates of the so-called lower pathway which, consequently, also allowed the mineralization of all monochlorobiphenyls and a number of di- and trichlorobiphenyls, thus preventing the accumulation of halobenzoates and of catabolites thereof. LB400 and KF707 also grow with the two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as the sole carbon and energy sources, but not with higher halogenated PCB mixtures, similar to the already published strain RW112. Repeated exposition of the modified LB400 to short pulses of UV light, over a prolonged period of time, allowed the isolation of a derivative of LB400, termed RW118, capable of growth with Aroclor 1016 still containing only traces of biphenyl, and in co-culture with modified KF707 termed RW120, and modified H850 (RW112) with Aroclor 1242, the commercial mixture already void of biphenyl and monochlorobiphenyls.
Collapse
Affiliation(s)
- Verónica Hernández-Sánchez
- Department of Environmental Protection, Experimental Station of the Zaidín, Spanish High Council for Scientific Research Granada, Spain
| | | | | |
Collapse
|
7
|
Payne RB, Fagervold SK, May HD, Sowers KR. Remediation of Polychlorinated Biphenyl Impacted Sediment by Concurrent Bioaugmentation with Anaerobic Halorespiring and Aerobic Degrading Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3807-15. [PMID: 23463900 PMCID: PMC3671860 DOI: 10.1021/es304372t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Rayford B. Payne
- Institute of Marine and Environmental
Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202,
United States
| | - Sonja K. Fagervold
- UPMC Univ
Paris 06, UMR 8882, LECOB, Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Harold D. May
- Marine Biomedicine and Environmental
Science Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South
Carolina 29412, United States
| | - Kevin R. Sowers
- Institute of Marine and Environmental
Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202,
United States
| |
Collapse
|
8
|
Zafra O, Fraile S, Gutiérrez C, Haro A, Páez-Espino AD, Jiménez JI, de Lorenzo V. Monitoring biodegradative enzymes with nanobodies raised in Camelus dromedarius with mixtures of catabolic proteins. Environ Microbiol 2011; 13:960-74. [DOI: 10.1111/j.1462-2920.2010.02401.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Parnell JJ, Denef VJ, Park J, Tsoi T, Tiedje JM. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 2009; 21:147-56. [PMID: 19672561 DOI: 10.1007/s10532-009-9289-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/29/2009] [Indexed: 11/26/2022]
Affiliation(s)
- J Jacob Parnell
- Center for Microbial Ecology and Crop and Soil Science, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | |
Collapse
|
10
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
11
|
Rehmann L, Daugulis AJ. Enhancement of PCB degradation byBurkholderia xenovorans LB400 in biphasic systems by manipulating culture conditions. Biotechnol Bioeng 2007; 99:521-8. [PMID: 17705226 DOI: 10.1002/bit.21610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of large amounts of hydrophobic substances to degrading microorganisms. This paper explores the reactor conditions under which the polychlorinated biphenyl (PCB) degrader Burkholderia xenovorans LB400 can degrade significant amounts of the PCB mixture Aroclor(R) 1242. Aroclor(R) degradation was found to stall after approximately 40 h if no carbon source other than PCBs was available in the reactor. Sodium pyruvate was found to be a suitable carbon source to maintain microbial activity against PCBs and to function as a substrate for additional cell growth. Both biphenyl (while required during the inoculum preparation) and glucose had a negative effect during the Aroclor(R) degradation phase. Initial Aroclor(R) 1242 degradation rates in the presence of pyruvate were high (6.2 mg L(-1) h(-1)) and 85% of an equivalent concentration of 100 mg Aroclor(R) 1242 per L aqueous phase could be degraded in 48 h, which suggest that solvent extraction of PCBs from soil followed by their biodegradation in TPPBs might be a feasible remediation option.
Collapse
Affiliation(s)
- Lars Rehmann
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
12
|
Ohtsubo Y, Goto H, Nagata Y, Kudo T, Tsuda M. Identification of a response regulator gene for catabolite control from a PCB-degrading beta-proteobacteria, Acidovorax sp. KKS102. Mol Microbiol 2006; 60:1563-75. [PMID: 16796688 DOI: 10.1111/j.1365-2958.2006.05197.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acidovorax sp. (formally Pseudomonas sp.) strain KKS102 carries a bph operon for the degradation of PCB/biphenyl. Transcription from the pE promoter for the bph operon was found to be under catabolite control, i.e. the promoter activity was at a lower level when succinate, fumarate or acetate was added to the culture. Some mutations in the immediate upstream region of the pE promoter resulted in catabolite-insensitive and constitutively low promoter activity, suggesting that a transcriptional activator was involved in catabolite control. A genetic screen for a pE promoter activator identified two tandemly arranged genes, bphP and bphQ, that encoded proteins homologous to the sensor kinases and response regulators, respectively, of two-component regulatory system. In the bphPQ double mutant, pE promoter activity was weak and catabolite-insensitive, and a supply of the bphQ gene alone led to the restoration of the catabolite response. The mechanism of catabolite repression in KKS102 is explained in terms of inhibition of activation by BphQ. The genes highly similar to bphQ were found from several beta-proteobacteria, such as Burkholderia cenocepacia J2315, B. multivorans ATCC17616, B. xenovorans LB400 and Ralstonia solanacearum RS1085.
Collapse
Affiliation(s)
- Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | | | | | | | |
Collapse
|
13
|
Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology (Reading) 2005; 151:4139-4151. [PMID: 16339959 DOI: 10.1099/mic.0.28437-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillussp. JF8 is a thermophilic polychlorinated biphenyl (PCB) degrader, which utilizes biphenyl and naphthalene. A thermostable, Mn-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase, BphC_JF8, has been characterized previously. Upstream ofbphCare five ORFs exhibiting low homology with, and a different gene order from, previously characterizedbphgenes. From the 5′ to 3′ direction the genes are: a putative regulatory gene (bphR), a hydrolase (bphD), the large and small subunits of a ring-hydroxylating dioxygenase(bphA1A2), and acis-diol dehydrogenase (bphB). Hybridization studies indicate that the genes are located on a plasmid. Ring-hydroxylating activity of recombinant BphA1A2_JF8 towards biphenyl, PCB, naphthalene and benzene was observed inEscherichia colicells, with complementation of non-specific ferredoxin and ferredoxin reductase by host cell proteins. PCB degradation by recombinant BphA1A2_JF8 showed that the congener specificity of the recombinant enzyme was similar toBacillussp. JF8. BphD_JF8, with an optimum temperature of 85 °C, exhibited a narrow substrate preference for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. The Arrhenius plot of BphD_JF8 was biphasic, with two characteristic energies of activation and a break point at 47 °C.
Collapse
Affiliation(s)
- Gouri Mukerjee-Dhar
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Minoru Shimura
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Daisuke Miyazawa
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Kazuhide Kimbara
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Environmental Biotechnology Laboratory, Railway Technical Research Institute, Kokubunji, Tokyo 185-8540, Japan
| | - Takashi Hatta
- Research Institute of Technology, Okayama University of Science, Okayama 703-8232, Japan
| |
Collapse
|
14
|
Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD. Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 2005; 187:7996-8005. [PMID: 16291673 PMCID: PMC1291281 DOI: 10.1128/jb.187.23.7996-8005.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/14/2005] [Indexed: 11/20/2022] Open
Abstract
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C(1) metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were approximately 16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (box(C)) pathway was also expressed during growth on biphenyl: Box(C) proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (box(M)) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C(1) metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kimbara K. Recent Developments in the Study of Microbial Aerobic Degradation of Polychlorinated Biphenyls. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
17
|
Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM. Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 2004; 70:4961-70. [PMID: 15294836 PMCID: PMC492332 DOI: 10.1128/aem.70.8.4961-4970.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed and successfully implemented the use of in situ-synthesized 45-mer oligonucleotide DNA microarrays (XeoChips) for genome-wide expression profiling of Burkholderia xenovorans LB400, which is among the best aerobic polychlorinated biphenyl degraders known so far. We conducted differential gene expression profiling during exponential growth on succinate, benzoate, and biphenyl as sole carbon sources and investigated the transcriptome of early-stationary-phase cells grown on biphenyl. Based on these experiments, we outlined metabolic pathways and summarized other cellular functions in the organism relevant for biphenyl and benzoate degradation. All genes previously identified as being directly involved in biphenyl degradation were up-regulated when cells were grown on biphenyl compared to expression in succinate-grown cells. For benzoate degradation, however, genes for an aerobic coenzyme A activation pathway were up-regulated in biphenyl-grown cells, while the pathway for benzoate degradation via hydroxylation was up-regulated in benzoate-grown cells. The early-stationary-phase biphenyl-grown cells showed similar expression of biphenyl pathway genes, but a surprising up-regulation of C(1) metabolic pathway genes was observed. The microarray results were validated by quantitative reverse transcription PCR with a subset of genes of interest. The XeoChips showed a chip-to-chip variation of 13.9%, compared to the 21.6% variation for spotted oligonucleotide microarrays, which is less variation than that typically reported for PCR product microarrays.
Collapse
Affiliation(s)
- V J Denef
- Center for Microbial Ecology, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 2004; 186:5189-96. [PMID: 15292119 PMCID: PMC490896 DOI: 10.1128/jb.186.16.5189-5196.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
19
|
Takeda H, Yamada A, Miyauchi K, Masai E, Fukuda M. Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1. J Bacteriol 2004; 186:2134-46. [PMID: 15028699 PMCID: PMC374424 DOI: 10.1128/jb.186.7.2134-2146.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the bphA1A2A3A4C1B genes, which are responsible for the conversion of biphenyl and polychlorinated biphenyl to the meta-cleavage products in Rhodococcus sp. strain RHA1, was examined. The bphA1 promoter (P(bphA1)) was identified and was shown to promote transcription induction by biphenyl and ethylbenzene. An 8.8-kb HindIII fragment that promotes transcription induction of P(bphA1) in Rhodococcus erythropolis IAM1399 was isolated from the region downstream of bphB by using a reporter plasmid containing P(bphA1). Analysis of the nucleotide sequence of this fragment revealed a set of putative two-component regulatory system genes, which were designated bphS and bphT. Deletion analysis of the 8.8-kb HindIII fragment indicated that bphT is responsible for the basal activation of P(bphA1) and that both bphS and bphT are required for the elevated basal activation of and transcriptional induction by biphenyl of P(bphA1). These results support the notion that bphS and bphT encode a sensor kinase and a response regulator, respectively, of a two-component regulatory system. The bphS and bphT genes promote transcriptional induction by a variety of aromatic compounds, including biphenyl, benzene, alkylbenzenes, and chlorinated benzenes. A promoter activity assay and reverse transcription (RT)-PCR analysis revealed a weak constitutive promoter in the adjacent region upstream of bphS. RT-PCR analysis indicated that there is induced transcription of bphA1 through bphT, in which P(bphA1) is thought to take part. An insertionally inactivated bphS mutant, SDR1, did not grow on biphenyl. Growth was restored by introduction of an intact bphS gene into SDR1. These results indicate that at least bphS is indispensably responsible for the growth of RHA1 on biphenyl.
Collapse
Affiliation(s)
- Hisashi Takeda
- Department of Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | | | | | | | | |
Collapse
|