1
|
Franko O, Čižmáriková M, Kello M, Michalková R, Wesołowska O, Środa-Pomianek K, Marques SM, Bednář D, Háziková V, Liška TJ, Habalová V. Acridine-Based Chalcone 1C and ABC Transporters. Int J Mol Sci 2025; 26:4138. [PMID: 40362377 PMCID: PMC12071533 DOI: 10.3390/ijms26094138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320's absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1.
Collapse
Affiliation(s)
- Ondrej Franko
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Olga Wesołowska
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Viktória Háziková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Tomáš Ján Liška
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Viera Habalová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
2
|
Zlotnikov ID, Belogurova NG, Kudryashova EV. Targeted Delivery Inside the Cells Directly Visualized with Förster Resonance Energy Transfer (FRET). Polymers (Basel) 2025; 17:790. [PMID: 40292615 PMCID: PMC11944702 DOI: 10.3390/polym17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones (MUmb and AMC) encapsulated in the polymeric micellar formulations. The efficiency of the drug delivery was quantified using the FRET efficiency, measured as the degree of energy transfer from the drug to the RFP. FRET efficiency directly provides the determination of the delivery efficacy, offering a versatile platform adaptable to various drugs and cell types. We used polymer micelles as a carrier for targeted delivery of fluorescent drugs to bacterial cells expressing RFP. The physicochemical characterization of the interaction between the drugs and the micelles including spectral properties, and the solubility and binding constants, were determined. We revealed a stronger affinity of MUmb for heparin-based micelles (Kd~10-5 M) compared to chitosan-based micelles (Kd~10-4 M), underscoring the influence of polymer composition on drug loading efficiency. For micelles containing MUmb, a FRET efficiency significantly exceeds (by three times) the efficiency for non-micellar MUmb, which have minimal penetration into bacterial cells. The most noticeable effect was observed with the use of the micellar curcumin providing pronounced activation of the RPF fluorescence signal, due to the interaction with curcumins (fluorophore-donor). Curcumin delivery using Chit5-OA micelle resulted in a 115% increase in RFP fluorescence intensity, and Hep-LA showed a significant seven-fold increase. These results highlight the significant effect of micellar composition on the effectiveness of drug delivery. In addition, we have developed a visual platform designed to evaluate the effectiveness of a pharmaceutical product through the visualization of the fluorescence of a bacterial culture on a Petri dish. This method allows us to quickly and accurately assess the penetration of a drug into bacteria, or those located inside other cells, such as macrophages, where the intercellular latent forms of the infection are located. Micellar formulations show enhanced antibacterial activity compared to free drugs, and formulations with Hep-OA micelles demonstrate the most significant reduction in E. coli viability. Synergistic effects were observed when combining curcumin and MUmb with moxifloxacin, resulting in a remarkable 40-50% increase in efficacy. The presented approach, based on the FRET test system with RFP expressed in the bacterial cells, establishes a powerful platform for development and optimizing targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
3
|
Maschio-Lima T, Lemes TH, Marques MDR, Siqueira JPZ, de Almeida BG, Caruso GR, Von Zeska Kress MR, de Tarso da Costa P, Regasini LO, de Almeida MTG. Synergistic activity between conventional antifungals and chalcone-derived compound against dermatophyte fungi and Candida spp. Int Microbiol 2025; 28:265-275. [PMID: 38819732 DOI: 10.1007/s10123-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The scarce antifungal arsenal, changes in the susceptibility profile of fungal agents, and lack of adherence to treatment have contributed to the increase of cases of dermatomycoses. In this context, new antimicrobial substances have gained importance. Chalcones are precursors of the flavonoid family that have multiple biological activities, have high tolerability by humans, and easy synthesis. In this study, we evaluated the in vitro antifungal activity, alone and in combination with conventional antifungal drugs, of the VS02-4'ethyl chalcone-derived compound against dermatophytes and Candida spp. Susceptibility testing was carried out by broth microdilution. Experiments for determination of the target of the compound on the fungal cell, time-kill kinetics, and toxicity tests in Galleria mellonella model were also performed. Combinatory effects were evaluated by the checkerboard method. Results showed high activity of the compound VS02-4'ethyl against dermatophytes (MIC of 7.81-31.25 μg/ml). The compound targeted the cell membrane, and the time-kill test showed the compound continues to exert gradual activity after 5 days on dermatophytes, but no significant activity on Candida. Low toxicity was observed at 250 mg/kg. Excellent results were observed in the combinatory test, where VS02-4'ethyl showed synergistic interactions with itraconazole, fluconazole, terbinafine, and griseofulvin, against all isolates tested. Although further investigation is needed, these results revealed the great potential of chalcone-derived compounds against fungal infections for which treatments are long and laborious.
Collapse
Affiliation(s)
- Taiza Maschio-Lima
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Mariela Domiciano Ribeiro Marques
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - João Paulo Zen Siqueira
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | | | - Glaucia Rigotto Caruso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Marcia Regina Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Paulo de Tarso da Costa
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luis Octávio Regasini
- Laboratory of Antibiotics and Chemotherapy, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Margarete Teresa Gottardo de Almeida
- Department of Dermatological, Infectious, and Parasitic Diseases, School of Medicine São José Do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Söylemez T, Kaplancıklı ZA, Osmaniye D, Özkay Y, Demirci F. Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens. Curr Microbiol 2024; 81:258. [PMID: 38960917 PMCID: PMC11222229 DOI: 10.1007/s00284-024-03788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Institut Für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Fatih Demirci
- Faculty of Pharmacy, Pharmacognosy Department, Anadolu University, Eskişehir, Türkiye
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Cyprus
| |
Collapse
|
5
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
6
|
Chaudhary T, Upadhyay PK, Kataria R. Anti-inflammatory and Antimicrobial Potential of 1, 3, 4-oxadiazoles and its Derivatives: A Review. Curr Org Synth 2024; 21:1014-1020. [PMID: 38037905 DOI: 10.2174/0115701794265887231014061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 12/02/2023]
Abstract
1, 3, 4-oxadiazole and its derivatives have significant anti-inflammatory and antimicrobial property. Their precise mechanism of action is not known but it is postulated that they act by inhibiting the biosynthesis of certain prostaglandins. 1, 3, 4-oxadiazoles are a class of heterocyclic compounds with wide variety of biological and pharmacological activities. They have been reported to possess analgesic, antimicrobial, antipyretic and anti-inflammatory properties. These compounds are also active against a number of other inflammatory conditions such as arthritis, gout etc. A wide variety of these compounds have been synthesized and some of them are under clinical trials. In this review article, anti-inflammatory and antimicrobial activity of the 1, 3, 4- oxadiazole shall be discussed.
Collapse
Affiliation(s)
- Tarun Chaudhary
- Department of Medicinal Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Prabhat Kumar Upadhyay
- Department of Medicinal Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Ritu Kataria
- Department of Chemistry, G.V.M College of Pharmacy, Sonipat, Haryana, 131001, India
| |
Collapse
|
7
|
Varela MF, Stephen J, Bharti D, Lekshmi M, Kumar S. Inhibition of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily in Bacterial Pathogens. Biomedicines 2023; 11:1448. [PMID: 37239119 PMCID: PMC10216197 DOI: 10.3390/biomedicines11051448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pathogens resistant to multiple structurally distinct antimicrobial agents are causative agents of infectious disease, and they thus constitute a serious concern for public health. Of the various bacterial mechanisms for antimicrobial resistance, active efflux is a well-known system that extrudes clinically relevant antimicrobial agents, rendering specific pathogens recalcitrant to the growth-inhibitory effects of multiple drugs. In particular, multidrug efflux pump members of the major facilitator superfamily constitute central resistance systems in bacterial pathogens. This review article addresses the recent efforts to modulate these antimicrobial efflux transporters from a molecular perspective. Such investigations can potentially restore the clinical efficacy of infectious disease chemotherapy.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM 88130, USA
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Deeksha Bharti
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| |
Collapse
|
8
|
Dos Santos ATL, de Araújo-Neto JB, Costa da Silva MM, Paulino da Silva ME, Carneiro JNP, Fonseca VJA, Coutinho HDM, Bandeira PN, Dos Santos HS, da Silva Mendes FR, Sales DL, Morais-Braga MFB. Synthesis of chalcones and their antimicrobial and drug potentiating activities. Microb Pathog 2023; 180:106129. [PMID: 37119940 DOI: 10.1016/j.micpath.2023.106129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 μM (32 μg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 μM and 2.71 × 101 μM (512 μg/mL and 8 μg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 μg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 μg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 μM (0.4909 μg/mL) to 2.35 μM (13.96 μg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Débora Lima Sales
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceara, Brazil
| | | |
Collapse
|
9
|
Kuttithodi AM, Nikhitha D, Jacob J, Narayanankutty A, Mathews M, Olatunji OJ, Rajagopal R, Alfarhan A, Barcelo D. Antioxidant, Antimicrobial, Cytotoxicity, and Larvicidal Activities of Selected Synthetic Bis-Chalcones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238209. [PMID: 36500302 PMCID: PMC9740027 DOI: 10.3390/molecules27238209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.
Collapse
Affiliation(s)
- Aswathi Moothakoottil Kuttithodi
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Divakaran Nikhitha
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
- Correspondence: (A.N.); (O.J.O.)
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Correspondence: (A.N.); (O.J.O.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Birru RL, Bein K, Bondarchuk N, Wells H, Lin Q, Di YP, Leikauf GD. Antimicrobial and Anti-Inflammatory Activity of Apple Polyphenol Phloretin on Respiratory Pathogens Associated With Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol 2021; 11:652944. [PMID: 34881190 PMCID: PMC8645934 DOI: 10.3389/fcimb.2021.652944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infections contribute to accelerated progression and severity of chronic obstructive pulmonary disease (COPD). Apples have been associated with reduced symptoms of COPD and disease development due to their polyphenolic content. We examined if phloretin, an apple polyphenol, could inhibit bacterial growth and inflammation induced by the main pathogens associated with COPD. Phloretin displayed bacteriostatic and anti-biofilm activity against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis, Streptococcus pneumoniae, and to a lesser extent, Pseudomonas aeruginosa. In vitro, phloretin inhibited NTHi adherence to NCI-H292 cells, a respiratory epithelial cell line. Phloretin also exhibited anti-inflammatory activity in COPD pathogen-induced RAW 264.7 macrophages and human bronchial epithelial cells derived from normal and COPD diseased lungs. In mice, NTHi bacterial load and chemokine (C-X-C motif) ligand 1 (CXCL1), a neutrophil chemoattractant, was attenuated by a diet supplemented with phloretin. Our data suggests that phloretin is a promising antimicrobial and anti-inflammatory nutraceutical for reducing bacterial-induced injury in COPD.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiao Lin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Flavonoids as Inhibitors of Bacterial Efflux Pumps. Molecules 2021; 26:molecules26226904. [PMID: 34833994 PMCID: PMC8625893 DOI: 10.3390/molecules26226904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are widely occurring secondary plant constituents, and are abundant in vegetable and fruit diets as well as herbal medicines. Therapeutic treatment options for bacterial infections are limited due to the spread of antimicrobial resistances. Hence, in a number of studies during the last few years, different classes of plant secondary metabolites as resistance-modifying agents have been carried out. In this review, we present the role of flavonoids as inhibitors of bacterial efflux pumps. Active compounds could be identified in the subclasses of chalcones, flavan-3-ols, flavanones, flavones, flavonols, flavonolignans and isoflavones; by far the majority of compounds were aglycones, although some glycosides like kaempferol glycosides with p-coumaroyl acylation showed remarkable results. Staphylococcus aureus NorA pump was the focus of many studies, followed by mycobacteria, whereas Gram-negative bacteria are still under-investigated.
Collapse
|
12
|
Curuțiu C, Dițu LM, Grumezescu AM, Holban AM. Polyphenols of Honeybee Origin with Applications in Dental Medicine. Antibiotics (Basel) 2020; 9:E856. [PMID: 33266173 PMCID: PMC7761219 DOI: 10.3390/antibiotics9120856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Honeybee products are a great source of polyphenols with recognized applications in dental medicine. Although their biological mechanisms in oral diseases are not fully understood, numerous in vitro, in vivo and clinical studies have reported promising results in the prevention and treatment of oral diseases. Bioactivities, such as antibacterial, antiviral, antiparasite, anticancer, anti-inflammatory and anti-oxidant properties, recommend their future study in order to develop efficient alternatives in the management of widespread oral conditions, such as dental caries and periodontitis. The most investigated mechanisms of polyphenols in oral health rely on their ability to strengthen the dental enamel, decrease the development of dental plaque formation, inhibit the progression of dental caries and development of dental pathogens and show anti-inflammatory properties. These features recommend them as useful honeybee candidates in the management of emerging oral diseases.
Collapse
Affiliation(s)
- Carmen Curuțiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| | - Lia Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (C.C.); (L.M.D.); (A.M.H.)
| |
Collapse
|