1
|
Mohammed HT, Koscianski CA, Berent TE, Gordy GG, Johnson S, Herren SC, Patel R. Corynebacterium mayonis sp. nov. isolated from a human blood culture. Int J Syst Evol Microbiol 2025; 75. [PMID: 39887037 DOI: 10.1099/ijsem.0.006632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
A novel Corynebacterium species, strain BD556T, isolated from blood, was identified at Mayo Clinic, Rochester, MN, USA. After failing definitive identification using MALDI-ToF MS and partial 16S rRNA gene sequencing, BD556T was characterized using a polyphasic approach, including phenotypic, biochemical and whole-genome sequencing methods. BD556T was a Gram-positive rod with clubbed ends, facultatively anaerobic, catalase-positive, oxidase-negative and non-motile. Colonies were white, opaque and non-haemolytic with halo-like edges. BD556T grew at 35 °C in room air, with CO2 and under anaerobic conditions. BD556T grew well in 0 and 6% NaCl and weakly in 10% NaCl. The genome size was 2 349 779 bp with a G+C content of 60.39%. Phylogenetic analysis using 16S rRNA gene sequence analysis, average nucleotide identity and digital DNA-DNA hybridization between the genome of BD556T and the closest type strains from the Type Strain Genome Server database yielded separation values well beyond those required for species delineation. Chemotaxonomic analyses of BD556T revealed ribose, arabinose and galactose as whole-cell sugars and an A1γ meso-diaminopimelic acid-direct peptidoglycan type. The major cellular fatty acids were C15 : 0 (21.0%), C16 : 0 (14.8%), C17 : 1 ω9c (26.2%), C17 : 0 (13.3%) and C18 : 1 ω9c (18.3%). Polar lipids included diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids and phospholipids. BD556T also contained mycolic acids (32-36 carbons) typical of corynebacteria. The respiratory quinones were dominated by MK-8(H2) (71.2%) and MK-9(H2) (25.9%), with smaller amounts of MK-7(H2) and MK-10(H2). The results presented support the tenet that BD556T (=TSD 427T=NCTC 15078T) is a novel species for which the name Corynebacterium mayonis sp. nov. is proposed.
Collapse
Affiliation(s)
- Hamidu T Mohammed
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina A Koscianski
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Taylor E Berent
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Garrett G Gordy
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sebastian C Herren
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Abdullahi IN, Juárez-Fernández G, Höfle Ú, Cardona-Cabrera T, Mínguez D, Pineda-Pampliega J, Lozano C, Zarazaga M, Torres C. Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain. ECOHEALTH 2023; 20:105-121. [PMID: 37060390 DOI: 10.1007/s10393-023-01626-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/11/2023] [Indexed: 06/11/2023]
Abstract
Migratory storks could be vectors of transmission of bacteria of public health concern mediated by the colonization, persistence and excretion of such bacteria. This study aims to determine genera/species diversity, prevalence, and co-colonization indices of bacteria obtained from tracheal (T) and nasal (N) samples from storks in relation to exposure to point sources through foraging. One-hundred and thirty-six samples from 87 nestlings of colonies of parent white storks with different foraging habits (natural habitat and landfills) were obtained (84 T-samples and 52 N-samples) and processed. Morphologically distinct colonies (up to 12/sample) were randomly selected and identified by MALDI-TOF-MS. About 87.2% of the total 806 isolates recovered were identified: 398 from T-samples (56.6%) and 305 from N-samples (43.4%). Among identified isolates, 17 genera and 46 species of Gram-positive and Gram-negative bacteria were detected, Staphylococcus (58.0%) and Enterococcus (20.5%) being the most prevalent genera. S. sciuri was the most prevalent species from T (36.7%) and N (34.4%) cavities of total isolates, followed by E. faecalis (11.1% each from T and N), and S. aureus [T (6.5%), N (13.4%)]. Of N-samples, E. faecium was significantly associated with nestlings of parent storks foraging in landfills (p = 0.018). S. sciuri (p = 0.0034) and M. caseolyticus (p = 0.032) from T-samples were significantly higher among nestlings of parent storks foraging in natural habitats. More than 80% of bacterial species in the T and N cavities showed 1-10% co-colonization indices with one another, but few had ≥ 40% indices. S. sciuri and E. faecalis were the most frequent species identified in the stork nestlings. Moreover, they were highly colonized by other diverse and potentially pathogenic bacteria. Thus, storks could be sentinels of point sources and vehicles of bacterial transmission across the "One Health" ecosystems.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Guillermo Juárez-Fernández
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Úrsula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Teresa Cardona-Cabrera
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - David Mínguez
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Javier Pineda-Pampliega
- Department of Biology, Lund University, Lund, Sweden
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lozano
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- OneHealth-UR Research Group, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain.
| |
Collapse
|
3
|
Zhang G, Yang J, Lai XH, Jin D, Lu S, Ren Z, Qin T, Pu J, Ge Y, Cheng Y, Yang C, Lv X, Jiao Y, Huang Y, Xu J. Corynebacterium zhongnanshanii sp. nov. isolated from trachea of Marmota himalayana, Corynebacterium lujinxingii sp. nov. and Corynebacterium wankanglinii sp. nov. from human faeces. Int J Syst Evol Microbiol 2021; 71. [PMID: 34846289 DOI: 10.1099/ijsem.0.005069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2-64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1 ω9c and C18 : 0 ante/C18 : 2 ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35-37 °C, 0.5 % (w/v) NaCl and pH 7.0-8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Tian Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yajun Ge
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yifan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China.,Institute of Public Health, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
4
|
Busse HJ, Kleinhagauer T, Glaeser SP, Spergser J, Kämpfer P, Rückert C. Classification of three corynebacterial strains isolated from the Northern Bald Ibis ( Geronticus eremita): proposal of Corynebacterium choanae sp. nov., Corynebacterium pseudopelargi sp. nov., and Corynebacterium gerontici sp. nov. Int J Syst Evol Microbiol 2019; 69:2928-2935. [PMID: 31310200 DOI: 10.1099/ijsem.0.003580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-stain-positive, rod-to-coccoid-shaped, catalase-positive and non-motile bacterial strains isolated from the choanae of a Northern bald ibis, designated strains 200CHT, W8T and 812CHT, respectively, were subjected to comprehensive taxonomic characterization. The three strains were oxidase-negative. The 16S rRNA gene sequence of 200CHT showed highest similarities to Corynebacterium epidermidicanis 410T (96.7 %) followed by Corynebacterium argentoratense DSM 44202T, Corynebacterium ulcerans NCTC 7910T and Corynebacterium pseudotuberculosis CIP 102968T (each 96.3 %). Strains W8T and 812CHT both showed highest 16S rRNA gene sequence similarities to Corynebacterium pelargi 136/3T (98.0 and 99.9 %, respectively). Comparison of the partial housekeeping gene sequence of fusA showed higher sequence similarities of 812CHT to C. pelargi (95.8 %) than W8T (90.9 %) which was also confirmed by corresponding amino acid sequences. In both, fusA gene and corresponding protein sequence strain 200CHT showed low sequence similarities to C. epidermidicanis 410T(81.6 and 87.4 %, respectively). Strains 812CHT and W8T had 76.7 % ANI similarity to each other and 88.2 and 76.4 % to C. pelargi 136/3T, respectively. In silico DNA-DNA hybridization values for 812CHT and W8T were 22.1 % among the two strains and 35.3 and 21.7 % to C. pelargi 136/3T, respectively. These data not only demonstrate that strain W8T is a representative of a novel species, but despite the high 16S rRNA gene sequence similarity to C. pelargi, strain 812CHT is also a representative of another novel species. All three strains possessed corynemycolic acids and contained meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan. The two strains, 200CHT and W8T, are distinguished from each other and established Corynebacterium species phylogenetically and phenotypically. In conclusion, three novel species of the genus Corynebacterium are proposed, namely Corynebacteriumpseudopelargi 812CHT (=LMG 30627T=CCM 8832T), Corynebacterium choanae 200CHT (=LMG 30628T=CCM 8831T) and Corynebacteriumgerontici W8T (=LMG 30629T=CCM 8833T), respectively.
Collapse
Affiliation(s)
- Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Tanita Kleinhagauer
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Joachim Spergser
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Christian Rückert
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, D-33615 Bielefeld, Germany
| |
Collapse
|
5
|
Van Dongen WFD, White J, Brandl HB, Leclaire S, Hatch SA, Danchin É, Wagner RH. Experimental evidence of a sexually transmitted infection in a wild vertebrate, the black-legged kittiwake (Rissa tridactyla). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wouter F D Van Dongen
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - Joël White
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
- Laboratoire Évolution & Diversité Biologique (EDB), UMR 5174 CNRS-UPS-IRD, Toulouse, France
- ENSFEA, Castanet-Tolosan, France
| | - Hanja B Brandl
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - Sarah Leclaire
- Laboratoire Évolution & Diversité Biologique (EDB), UMR 5174 CNRS-UPS-IRD, Toulouse, France
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, USA
| | - Étienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB), UMR 5174 CNRS-UPS-IRD, Toulouse, France
| | - Richard H Wagner
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Li YX, Yang SZ, Feng GD, Wang YH, Zhu HH. Corynebacterium guangdongense sp. nov., isolated from a contaminated plate. Int J Syst Evol Microbiol 2016; 66:3201-3206. [DOI: 10.1099/ijsem.0.001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yan-Xuan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Song-Zhen Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yong-Hong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
7
|
Complete Genome Sequence of the Type Strain Corynebacterium epidermidicanis DSM 45586, Isolated from the Skin of a Dog Suffering from Pruritus. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00959-15. [PMID: 26294641 PMCID: PMC4543519 DOI: 10.1128/genomea.00959-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of Corynebacterium epidermidicanis DSM 45586 comprises 2,692,072 bp with 58.06% G+C content. The annotation revealed 2,466 protein-coding regions, including genes for surface-anchored proteins with Cna B-type or bacterial Ig-like domains and for an adhesive SpaABC-type pilus with similarity to fimbrial subunits of Corynebacterium resistens DSM 45100.
Collapse
|