1
|
Yoon J. Polyphasic Taxonomic Analysis of Pontitalea aquivivens gen. nov., sp. nov., Isolated from Seawater. Curr Microbiol 2025; 82:308. [PMID: 40423755 DOI: 10.1007/s00284-025-04285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
A Gram-stain-negative, rod-shaped, strictly aerobic, non-motile, and chemo-organoheterotrophic alphaproteobacterium, designated KMU-169T, was isolated from coastal seawater in the Republic of Korea. The novel isolate was able to grow at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.5, and 15-40 °C. The analysis based on 16S rRNA gene sequences indicated that strain KMU-169T belongs to the family Paracoccaceae and shared the highest similarity (97.0%) with "Defluviimonas salinarum" CAU 1641T. The major (> 10%) cellular fatty acids were C18:1 ω7c and summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c). The predominant respiratory quinone was ubiquinone-10. Strain KMU-169T comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid, and an unidentified lipid. The assembled draft genome size of strain KMU-169T was 4.1 Mbp with a DNA G + C content of 65.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between the genomes of strain KMU-169T and its closely related taxa were 71.9-76.8%, 60.9-76.1%, and 18.4-21.0%, respectively. The genome of the strain KMU-169T revealed the presence of numerous genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially valuable enzymes. Based on the polyphasic taxonomic data reported in this study, a novel genus and a new species of the family Paracoccaceae, for which the name Pontitalea aquivivens gen. nov., sp. nov., is proposed with the type strain KMU-169T (= KCCM 90598T = NBRC 117093T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
2
|
Hameed A, Suchithra KV, Lin SY, Stothard P, Young CC. Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-E T affiliated to family Paracoccaceae. Antonie Van Leeuwenhoek 2023; 116:1247-1259. [PMID: 37740842 DOI: 10.1007/s10482-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Ecological studies on marine microbial communities largely focus on fundamental biogeochemical processes or the most abundant constituents, while minor biological fractions are frequently neglected. Youngimonas vesicularis CC-AMW-ET, isolated from coastal surface seawater in Taiwan, is an under-represented marine Paracoccaceae (earlier Rhodobacteraceae) member. The CC-AMW-ET genome was sequenced to gain deeper insights into its role in marine carbon and sulfur cycles. The draft genome (3.7 Mb) contained 63.6% GC, 3773 coding sequences and 51 RNAs, and displayed maximum relatedness (79.06%) to Thalassobius litoralis KU5D5T, a Roseobacteraceae member. While phototrophic genes were absent, genes encoding two distinct subunits of carbon monoxide dehydrogenases (CoxL, BMS/Form II and a novel form III; CoxM and CoxS), and proteins involved in HCO3- uptake and interconversion, and anaplerotic HCO3- fixation were found. In addition, a gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, form II), which fixes atmospheric CO2 was found in CC-AMW-ET. Genes for complete assimilatory sulfate reduction, sulfide oxidation (sulfide:quinone oxidoreductase, SqrA type) and dimethylsulfoniopropionate (DMSP) cleavage (DMSP lyase, DddL) were also identified. Furthermore, genes that degrade aromatic hydrocarbons such as quinate, salicylate, salicylate ester, p-hydroxybenzoate, catechol, gentisate, homogentisate, protocatechuate, 4-hydroxyphenylacetic acid, N-heterocyclic aromatic compounds and aromatic amines were present. Thus, Youngimonas vesicularis CC-AMW-ET is a potential chemolithoautotroph equipped with genetic machinery for the metabolism of aromatics, and predicted to play crucial roles in the biogeochemical cycling of marine carbon and sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Sedimentimonas flavescens gen. nov., sp. nov., isolated from sediment of Clam Island, Liaoning Province. Antonie Van Leeuwenhoek 2022; 115:979-994. [PMID: 35672593 DOI: 10.1007/s10482-022-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
A novel Gram-stain negative, aerobic and ovoid to short rod shaped bacterium with a single polar flagellum, named strain B57T, was isolated from sediment of Clam Island, Liaoning Province, China. The optimal growth of this strain was found to occur at 37 °C, pH 6-6.5, and in the presence of 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B57T forms a distinct lineage within the family Rhodobacteraceae, sharing high 16S rRNA gene sequence similarity with Sinirhodobacter populi sk2b1T (97.4%). The average amino acid identity of B57T and the closely related species were lower than the threshold level for genus delineation. The dominant respiratory quinone of strain B57T was identified as Q-10. The major fatty acids were found to be Summed Feature 8 (C18:1ω7c and/or C18:1ω6c), Summed Feature 3 (C16:1ω7c and/or C16:1ω6c) and C16: 0. The polar lipids were identified as phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, two unidentified phospholipids, one unidentified glycolipid, and one unidentified lipid. The DNA G + C content of strain B57T was determined to be 64.1 mol%. Based on the biochemical, phylogenetic and chemotaxonomic analysis, strain B57T is concluded to represent a novel species of a novel genus, for which the name Sedimentimonas flavescens gen. nov., sp. nov.is proposed. The type strain is B57T (= CGMCC1.19488T = KCTC 92053T).
Collapse
|
4
|
Szabonella alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae isolated from a soda lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family
Rhodobacteraceae
. Its closest relatives are
Tabrizicola alkalilacus
DJCT (96.76% similarity) and
Tabrizicola piscis
K13M18T (96.76%), followed by
Tabrizicola sediminis
DRYC-M-16T (96.69 %),
Rhodobacter sediminicola
JA983T (96.62 %),
Tabrizicola aquatica
RCRI19T (96.47 %) and
Cereibacter johrii
JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18–28°C in the presence of 2–4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1
ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family
Rhodobacteraceae
, for which the name Szabonella alba gen. nov., sp. nov. is proposed.
Collapse
|
5
|
Roseitranquillus sediminis gen. nov., sp. nov. a novel genus and species of the family Rhodobacteraceae, isolated from sediment of an Arctic fjord. Antonie van Leeuwenhoek 2021; 114:2147-2162. [PMID: 34643814 DOI: 10.1007/s10482-021-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
A Gram-negative, aerobic, non-motile, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain MCCB 386T was isolated from sediment samples collected from Kongsfjorden, an Arctic fjord. The strain MCCB 386T showed growth at 4-37 °C (optimum 27°C) in the presence of 1-8% NaCl (w/v, optimum 3.5%) and at pH 6.0-8.0 (optimum pH 7.0). The major fatty acids were C18:1ω7c (54.0%) and 11-methyl C18:1ω7c (22.6%). The dominant respiratory quinone was Q-10. The major polar lipids comprised of phosphatidylcholine (PC), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphoglycolipid (PGL), one unidentified aminolipid, two glycolipids and two unidentified lipids. The genomic G+C content of the strain MCCB 386T was 68.1 mol%. The 16 S rRNA gene sequences based phylogenetic analysis of MCCB 386T showed that Psychromarinibacter halotolerans YBW34T (95.88%) is the most closely related species. In addition, overall genome relatedness indices (OGRI) of MCCB 386T with closely related strains were lower than threshold level for species and genus delineation. The analysis of Biosynthetic Gene clusters (BGCs) revealed the potential of this strain for production of novel bioactive secondary metabolites. As per polyphasic taxonomic characterisation, strain MCCB 386T represents a novel species of a novel genus for which the name Roseitranquillus sediminis gen. nov., sp. nov. is suggested. The type strain of the species is MCCB 386T (= JCM 33,538T= KACC 21,531T).
Collapse
|
6
|
Liu Y, Pei T, Zhang J, Yang F, Zhu H. Proposal for transfer of Defluviimonas alba to the genus Frigidibacter as Frigidibacter mobilis nom. nov. Int J Syst Evol Microbiol 2020; 70:3553-3558. [PMID: 32379019 DOI: 10.1099/ijsem.0.004216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic study was undertaken to clarify the exact position of the type strain cai42T of the species Defluviimonas alba Pan et al. 2015. The results of the 16S rRNA gene sequence analysis indicated that the two sequences from cai42T shared 99.6 and 99.7 % similarity to that of the type strain SP32T of the species Frigidibacter albus and formed a coherent clade in the phylogenetic tree. Whole genomic comparison between cai42T and SP32T yielded a digital DNA-DNA hybridization estimate of 36.3 %, an average nucleotide identity of 88.8 % and an average amino acid identity of 89.8 %, clearly indicating that the two strains should belong to two genospecies of the same genus. The close relationship between the two strains was underpinned by the results of genome-based phylogenetic analysis. Although cai42T and SP32T shared similar physiological and biochemical properties, some striking differences, such as mobility, the temperature range for growth and the polar lipid components, could distinguish them as separate species. Therefore, the comparative phenotypic and genotypic analyses supported the incorporation of Defluviimonas alba into the genus Frigidibacter as Frigidibacter mobilis nom. nov. with the type strain cai42T (=CGMCC 1.12518T=LMG 27406T).
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tao Pei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jun Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Fan Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
7
|
Zhang YX, Li FL, Ma SC, Zheng GD, Chen WF, Li WJ, Wang L. Frigidibacter oleivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:4339-4344. [PMID: 32589572 DOI: 10.1099/ijsem.0.004294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped bacterium, designated XJ4T, was isolated from oil-contaminated water, collected from Xinjiang Province, north-west PR China (45° 1' 27″ N, 85° 6' 14″ E). Growth occurred at 20-45 °C (optimum, 30 °C) and pH 6.0-10.0 (optimum, pH 6.0-7.0). Strain XJ4T could tolerate up to 7 % (w/v) NaCl and grow optimally in the absence of NaCl. Phylogenetic analysis based on comparative sequence analysis of 16S rRNA gene sequences indicated that strain XJ4T belonged to the genus Frigidibacter, and that was closely related to Frigidibacter mobilis cai42T (97.2 %), Frigidibacter albus SP32T (97.0 %) and Rhodobacter aestuarii JA296T (97.0 %). The average nucleotide identity values between XJ4T and three type strains were 77.9, 77.6 and 71.9 %, respectively. The DNA G+C content of strain XJ4T was 69.5 mol%. The sole respiratory quinone was Q-10. The major cellular fatty acid was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl C18 : 1 ω7c. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and unidentified lipids. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain XJ4T represents a novel species of the genus Frigidibacter, for which the name Frigidibacter oleivorans sp. nov. is proposed. The type strain is XJ4T (=CGMCC 1.13778T=LMG 30952T).
Collapse
Affiliation(s)
- Ya-Xi Zhang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Fang-Ling Li
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Su-Chen Ma
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Guo-Di Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Feng Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Wang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
8
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
9
|
Phurbu D, Wang H, Tang Q, Lu H, Zhu H, Jiang S, Xing P, Wu QL. Tabrizicola alkalilacus sp. nov., isolated from alkaline Lake Dajiaco on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:3420-3425. [PMID: 31385782 DOI: 10.1099/ijsem.0.003635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Lake Dajiaco on the Tibetan Plateau. Strain DJCT grew without NaCl and tolerated up to 3 % (w/v) NaCl. Growth occurred at pH 6.0-10.0 (optimum, pH 7.0-8.0) and 15-37 °C (optimum, 25-30 °C). Vitamins were not required for growth. The main polar lipids of strain DJCT were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was Q-10. The major fatty acid was C18 : 1ω7c. Genome sequencing revealed a genome size of 4.61 Mbp and a G+C content of 62.9 mol%. Analysis of 16S rRNA sequences showed that strain DJCT belonged to the genus Tabrizicola, with the closest neighbour Tabrizicola aquatica RCRI19T (97.5 %). DNA-DNA relatedness between strain DJCT and the closest phylogenetically related strain T. aquatica RCRI19T was 40.8 %. Stain DJCT was clearly distinguished from the type strain mentioned above through phylogenetic analysis, DNA-DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristic comparisons. Based on its phenotypic and chemotaxonomic characteristics, strain DJCT could be classified as a representative of a novel species of the genus for which the name Tabrizicola alkalilacus sp. nov. is proposed. The type strain is DJCT (=CICC 24242T=KCTC 62173T).
Collapse
Affiliation(s)
- Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa 850000, PR China
| | - Hui Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Tang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Huibin Lu
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Han Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241002, PR China
| | - Siping Jiang
- Tibet Plateau Institute of Biology, Lhasa 850000, PR China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinglong L Wu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
10
|
Gouveia JD, Lian J, Steinert G, Smidt H, Sipkema D, Wijffels RH, Barbosa MJ. Associated bacteria of Botryococcus braunii (Chlorophyta). PeerJ 2019; 7:e6610. [PMID: 30944776 PMCID: PMC6441321 DOI: 10.7717/peerj.6610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/12/2019] [Indexed: 01/14/2023] Open
Abstract
Botryococcus braunii (Chlorophyta) is a green microalga known for producing hydrocarbons and exopolysaccharides (EPS). Improving the biomass productivity of B. braunii and hence, the productivity of the hydrocarbons and of the EPS, will make B. braunii more attractive for industries. Microalgae usually cohabit with bacteria which leads to the formation of species-specific communities with environmental and biological advantages. Bacteria have been found and identified with a few B. braunii strains, but little is known about the bacterial community across the different strains. A better knowledge of the bacterial community of B. braunii will help to optimize the biomass productivity, hydrocarbons, and EPS accumulation. To better understand the bacterial community diversity of B. braunii, we screened 12 strains from culture collections. Using 16S rRNA gene analysis by MiSeq we described the bacterial diversity across 12 B. braunii strains and identified possible shared communities. We found three bacterial families common to all strains: Rhizobiaceae, Bradyrhizobiaceae, and Comamonadaceae. Additionally, the results also suggest that each strain has its own specific bacteria that may be the result of long-term isolated culture.
Collapse
Affiliation(s)
- Joao D. Gouveia
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Jie Lian
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria J. Barbosa
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Ji X, Zhang C, Zhang X, Xu Z, Ding Y, Zhang Y, Song Q, Li B, Zhao H. Pelagivirga sediminicola gen. nov., sp. nov. isolated from the Bohai Sea. Int J Syst Evol Microbiol 2018; 68:3494-3499. [PMID: 30222096 DOI: 10.1099/ijsem.0.003015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, strain BH-SD19T, that was isolated from a marine sediment sample collected from the Bohai Sea, was subjected to a polyphasic taxonomic study. Cells of BH-SD19T are non-flagellated, non-gliding, oval-shaped rods, 0.5-1.0 µm wide and 1.0-2.0 µm long. BH-SD19T is strictly aerobic, and oxidase- and catalase-positive. Growth occurs at 15-40 °C (optimum 35 °C), at pH 6.0-8.5 (optimum 7.0-7.5) and with 1-10 % (w/v) NaCl (optimum 2 %). The predominant fatty acids are C19 : 0cyclo ω8c (46.5 %), C16 : 0 (20.3 %) and C18 : 1ω7c and/or C18 : 1ω6c (10.6 %). The major respiratory quinone is Q-10. The major polar lipids are phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content is 64.0 mol%. BH-SD19T shows the highest 16S rRNA sequence similarity to Pontibaca methylaminivorans (95.2 %) and strains of species of the genus Roseovarius(93.4-95.2 %). Sequence similarity values between BH-SD19T and other phylogenetically related species are all below 95.0 %. Phylogenetic trees based on 16S rRNA gene sequences indicate that BH-SD19T forms a distinct lineage and does not join any known genera in the trees. Phenotypic, chemotaxonomic and phylogenetic data indicate that BH-SD19T represents a novel genus and species in the family Rhodobacteraceae, for which the name Pelagivirga sediminicola gen. nov., sp. nov. is proposed. The type strain is BH-SD19T (=CCTCC AB 2017074T=KCTC 62202T).
Collapse
Affiliation(s)
- Xiaofei Ji
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Cong Zhang
- 2Shandong Province Key Laboratory of Applied Mycology, School of Life Science, Qingdao Agricultural University, Qingdao, PR China
| | - Xiying Zhang
- 3State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, PR China
| | - Zheng Xu
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Yunfei Ding
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Yimei Zhang
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Qing Song
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Boqing Li
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| | - Huilin Zhao
- 1Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, PR China
| |
Collapse
|
12
|
Guo LY, Ling SK, Li CM, Chen GJ, Du ZJ. Rhodosalinus sediminis gen. nov., sp. nov., isolated from marine saltern. Int J Syst Evol Microbiol 2017; 67:5108-5113. [PMID: 29043957 DOI: 10.1099/ijsem.0.002424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, moderately halophilic, motile, facultatively anaerobic and rod-shaped strain, designated WDN1C137T, was isolated from a marine saltern at Wendeng, PR China. Optimal growth occurred at 40 °C, pH 7.5 and with 7.0 % (w/v) NaCl. Q-10 was the sole respiratory quinone. The major cellular fatty acids (>10.0 %) in WDN1C137T were C18 : 1ω7c (46.2 %), cyclo C19 : 0ω8c (18.7 %) and C16 : 0 (12.3 %). The major polar lipids were phosphatidylglycerol, phosphoglycolipid, phosphatidylcholine, one unidentified glycolipid, one unidentified lipid, one unidentified aminolipid and two unidentified phospholipids. The genomic DNA G+C content was 70.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that WDN1C137T shared the highest similarity (94.5 %) to Roseivivax jejudonensis KCTC 42110T, followed by Roseivivax halodurans JCM 10272T (94.2 %) and Roseivivax roseus DSM 23042T (94.1 %). WDN1C137T formed a separate branch from the closely related genera Roseivivax, Loktanella, Paracoccus and Cribrihabitans within the family Rhodobacteraceae, which indicated that it represented a novel genus in the phylogenetic tree. On the basis of the data from the current polyphasic study, the isolate is proposed to represent a novel species of a novel genus within the family Rhodobacteraceae, with the name Rhodosalinus sediminis gen. nov., sp. nov. The type strain of the type species is WDN1C137T (=KCTC 52478T=MCCC 1H00170T).
Collapse
Affiliation(s)
- Ling-Yun Guo
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Si-Kai Ling
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Chang-Ming Li
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Guan-Jun Chen
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Zong-Jun Du
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
13
|
Zhang G, Haroon MF, Zhang R, Dong X, Wang D, Liu Y, Xun W, Dong X, Stingl U. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine-seawater interface at Erba Deep in the Red Sea. Int J Syst Evol Microbiol 2017; 67:4624-4631. [PMID: 29022541 DOI: 10.1099/ijsem.0.002344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two moderately halophilic marine bacterial strains of the family Rhodobacteraceae, designated ZGT108T and ZGT118T, were isolated from the brine-seawater interface at Erba Deep in the Red Sea (Saudi Arabia). Cells of both strains were aerobic, rod-shaped, non-motile, and Gram-stain-negative. The sequence similarity of the 16S rRNA genes of strains ZGT108T and ZGT118T was 94.9 %. The highest 16S rRNA gene sequence similarity of strain ZGT108T to its closest relative, Ruegeria conchae JCM 17315T, was 98.9 %, while the 16S rRNA gene of ZGT118T was most closely related to that of Ruegeria intermedia LMG 25539T (97.7 % similarity). The sizes of the draft genomes as presented here are 4 258 055 bp (strain ZGT108T) and 4 012 109 bp (strain ZGT118T), and the G+C contents of the draft genomes are 56.68 mol% (ZGT108T) and 62.94 mol% (ZGT108T). The combined physiological, biochemical, phylogenetic and genotypic data supported placement of both strains in the genus Ruegeria and indicated that the two strains are distinct from each other as well as from all other members in the genus Ruegeria. This was also confirmed by low DNA-DNA hybridization values (<43.6 %) and low ANI values (<91.8 %) between both strains and the most closely related Ruegeria species. Therefore, we propose two novel species in the genus Ruegeria to accommodate these novel isolates: Ruegeriaprofundi sp. nov. (type strain ZGT108T=JCM 19518T=ACCC 19861T) and Ruegeriamarisrubri sp. nov. (type strain ZGT118T=JCM 19519T=ACCC 19862T).
Collapse
Affiliation(s)
- Guishan Zhang
- Red Sea Research Center, King Abdulah University of Science and Technology, Thuwal Jeddah 23955-6900, Saudi Arabia.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mohamed Fauzi Haroon
- Red Sea Research Center, King Abdulah University of Science and Technology, Thuwal Jeddah 23955-6900, Saudi Arabia
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoyan Dong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Dandan Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Weibing Xun
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ulrich Stingl
- Red Sea Research Center, King Abdulah University of Science and Technology, Thuwal Jeddah 23955-6900, Saudi Arabia.,University of Florida, UF/IFAS, Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, Davie, FL 33314, USA
| |
Collapse
|
14
|
Qiao Y, Wang Y, Yang X, Liu J, Wu Y, Zhang XH. Psychromarinibacter halotolerans gen. nov., sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2017; 67:3518-3524. [PMID: 28866994 DOI: 10.1099/ijsem.0.002159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, motile, non-gliding, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain YBW34T, was isolated from seawater from the bottom of the Yellow Sea at station H12 (-73m in depth). Growth occurred at 10-45 °C (optimum 28 °C), in the presence of 1-12 % NaCl (w/v, optimum 4 %) and at pH 6.0-8.0 (optimum pH 7.0). The major fatty acids (>10 %) were C18 : 1 ω7c and C16 : 0. The major polar lipids comprised phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and three unidentified aminolipids. The major respiratory quinone was ubiquinone-10 (Q-10). The DNA G+C content of strain YBW34T was 64.2 mol%. The most closely related species was Tropicimonas isoalkanivorans JCM 14837T with 95.8 % sequence similarity in Alphaproteobacteria. It showed 16S rRNA gene sequence similarities of 93.03-95.49, 93.03-95.49 and 95.31-95.32 % to species of genera Rhodovulum, Lutimaribacter and Oceanicola, respectively. Nevertheless, strain YBW34T formed a distinct lineage in the trees which did not join the genera mentioned above in the phylogenetic dendrogram based on 16S rRNA gene sequences. The phenotypic, chemotaxonomic and phylogenetic data indicated that strain YBW34T represents a novel genus and species, for which the name Psychromarinibacter halotolerans gen. nov., sp. nov. is proposed. The type strain is YBW34T (=JCM 31462T=KCTC 52366T=MCCC 1K03203T).
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoting Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ji Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.,College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
15
|
Wang D, Wei Y, Cui Q, Li W. Amylibacter cionae sp. nov., isolated from the sea squirt Ciona savignyi. Int J Syst Evol Microbiol 2017; 67:3462-3466. [PMID: 28866998 DOI: 10.1099/ijsem.0.002140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterial strain, designated H-12T, was isolated from a sea squirt (Ciona savignyi) collected from Tsingtao Port, Jiaozhou Bay, China, and its taxonomic position was investigated. Strain H-12T grew optimally at 25-30 °C, at pH 7.0-8.0 and in the presence of 3.0-4.0 % (w/v) NaCl. The 16S rRNA gene sequence of strain H-12T exhibited the highest similarity to that of the type strain of Amylibacter marinus (95.3 %). A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain H-12T clustered with the type strain of A. marinus. The predominant ubiquinone in strain H-12T was identified as Q-10. The major fatty acids of strain H-12T were C18 : 1ω7c and C18 : 1ω7c 11-methyl. The major polar lipids detected in strain H-12T were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid, two unidentified phospholipids and five unidentified lipids. The DNA G+C content of strain H-12T was 52.7 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic properties, strain H-12T is considered to represent a novel species within the genus Amylibacter, for which the name Amylibacter cionae sp. nov. is proposed. The type strain is H-12T (=KCTC 52581T=CGMCC 1.15880T).
Collapse
Affiliation(s)
- Dandan Wang
- Li Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yuxi Wei
- Life Science College, Qingdao University, Qingdao 266071, PR China
| | - Qiu Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Qingdao 266101, PR China
| | - Wenli Li
- Li Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| |
Collapse
|
16
|
Thongphrom C, Kim JH, Yoon JH, Bora N, Kim W. Marimonas arenosa gen. nov., sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67:121-126. [DOI: 10.1099/ijsem.0.001581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Chutimon Thongphrom
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nagamani Bora
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|