1
|
Fisher LA, Dangre SR, Odenheimer A, Patel N, Doran PT, Bowman JS, Schmidt BE, Bartlett DH. Dethiothermospora halolimnae gen. nov., sp. nov., a novel moderately halophilic, thermotolerant, bacterium isolated from a brine lake. Int J Syst Evol Microbiol 2025; 75:006760. [PMID: 40305097 PMCID: PMC12044194 DOI: 10.1099/ijsem.0.006760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
A novel, strictly anaerobic, slightly alkaliphilic, halotolerant, peptide- and amino acid-utilizing bacterial strain, SD1T, was isolated from a hypersaline lake in Western Australia. The strain stained Gram-negative and was a motile, spore-forming rod. The strain grew between 15 and 50 °C (optimum 40 °C), 1-15% w/v sodium chloride (optimum 5%) and pH 6.0-10.0 (optimum 9.0). Major fatty acids included anteiso-C15 : 0 (24.9%), C14 : 0 dimethyl acetyl (13.2%), anteiso-C15 : 0 dimethyl acetyl (11.5%) and iso-C15 : 0 (10.4%). The DNA G+C content was 30.3 mol%. The isolate did not grow using any tested sugars but grew well on arginine and glycine. It is capable of using elemental sulfur and thiosulfate as alternate electron acceptors, but not sulfide, sulfate, nitrate or nitrite. 16S rRNA gene similarity indicates that the isolate is related to Sporosalibacterium tautonense MRo-4T (94.33% identity). SD1T showed 76.18%-76.31% average nucleotide identity with other strains within the family Thermohalobacteraceae. Phylogenetics, based on the 16S rRNA gene and whole-genome sequence, as well as phenotypic analysis, differentiates the isolate from close neighbors. We propose that SD1T represents a novel species in a new genus, which we have named Dethiothermospora halolimnae gen. nov., sp. nov., type strain SD1T (DSM 117405T = TSD-443T). From this work, we also propose repositioning of the genus Anaeromonas to the family Thermohalobacteraceae.
Collapse
Affiliation(s)
- Luke A. Fisher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Saloni R. Dangre
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | - Nirav Patel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | - Jeff S. Bowman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | - Douglas H. Bartlett
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Nixon SL, Bonsall E, Cockell CS. Limitations of microbial iron reduction under extreme conditions. FEMS Microbiol Rev 2022; 46:6645348. [PMID: 35849069 PMCID: PMC9629499 DOI: 10.1093/femsre/fuac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Microbial iron reduction is a widespread and ancient metabolism on Earth, and may plausibly support microbial life on Mars and beyond. Yet, the extreme limits of this metabolism are yet to be defined. To investigate this, we surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature. We then calculated Gibbs free energy of common microbially mediated iron reduction reactions across the pH-temperature habitability space to identify thermodynamic limits. Comparing predicted and observed limits, we show that microbial iron reduction is generally reported at extremes of pH or temperature alone, but not when these extremes are combined (with the exception of a small number of acidophilic hyperthermophiles). These patterns leave thermodynamically favourable combinations of pH and temperature apparently unoccupied. The empty spaces could be explained by experimental bias, but they could also be explained by energetic and biochemical limits to iron reduction at combined extremes. Our data allow for a review of our current understanding of the limits to microbial iron reduction at extremes and provide a basis to test more general hypotheses about the extent to which biochemistry establishes the limits to life.
Collapse
Affiliation(s)
- Sophie L Nixon
- Corresponding author: Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| | - Emily Bonsall
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
3
|
Li XG, Lin J, Bai SJ, Dai J, Jiao ZX, Tang HZ, Qi XQ, Zhang WJ, Liu M, Xu JS, Wu LF. Crassaminicella thermophila sp. nov., a moderately thermophilic bacterium isolated from a deep-sea hydrothermal vent chimney and emended description of the genus Crassaminicella. Int J Syst Evol Microbiol 2021; 71. [PMID: 34825884 DOI: 10.1099/ijsem.0.005112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel moderately thermophilic, anaerobic, heterotrophic bacterium (strain SY095T) was isolated from a hydrothermal vent chimney located on the Southwest Indian Ridge at a depth of 2730 m. Cells were Gram-stain-positive, motile, straight to slightly curved rods forming terminal endospores. SY095T was grown at 45-60 °C (optimum 50-55 °C), pH 6.0-7.5 (optimum 7.0), and in a salinity of 1-4.5 % (w/v) NaCl (optimum 2.5 %). Substrates utilized by SY095T included fructose, glucose, maltose, N-acetyl glucosamine and tryptone. Casamino acid and amino acids (glutamate, glutamine, lysine, methionine, serine and histidine) were also utilized. The main end products from glucose fermentation were acetate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14 : 0 (60.5%) and C16 : 0 (7.6 %). The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified phospholipids and two unidentified aminophospholipids. No respiratory quinones were detected. The chromosomal DNA G+C content was 30.8 mol%. The results of phylogenetic analysis of the 16S rRNA gene sequences indicated that SY095T was closely related to Crassaminicella profunda Ra1766HT (95.8 % 16S rRNA gene sequence identity). SY095T exhibited 78.1 % average nucleotide identity (ANI) to C. profunda Ra1766HT. The in silico DNA-DNA hybridization (DDH) value indicated that SY095T shared 22.7 % DNA relatedness with C. profunda Ra1766HT. On the basis of its phenotypic, genotypic and phylogenetic characteristics, SY095T is suggested to represent a novel species of the genus Crassaminicella, for which the name Crassaminicella thermophila sp. nov. is proposed. The type strain is SY095T (=JCM 34213=MCCC 1K04191). An emended description of the genus Crassaminicella is also proposed.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/ CAS- Sanya.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya, Hainan, PR China
| | - Jin Lin
- Hainan Tropical Ocean University, Sanya, PR China
| | - Shi-Jie Bai
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China
| | - Jie Dai
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Ze-Xi Jiao
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Hong-Zhi Tang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/ CAS- Sanya.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/ CAS- Sanya.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China.,Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya, Hainan, PR China
| | - Min Liu
- Hainan Tropical Ocean University, Sanya, PR China
| | - Jian-Sheng Xu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/ CAS- Sanya.,Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France
| |
Collapse
|
4
|
Chen Y, He Y, Shao Z, Han X, Chen D, Yang J, Zeng X. Thermosipho ferrireducens sp.nov., an anaerobic thermophilic iron(III)-reducing bacterium isolated from a deep-sea hydrothermal sulfide deposits. Int J Syst Evol Microbiol 2021; 71. [PMID: 34328826 DOI: 10.1099/ijsem.0.004929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, iron-reducing bacterium strain JL129W03T (=KCTC 15905T=MCCC 1A14213T) was isolated from a sulfide sample collected from the Daxi hydrothermal field (60.5° E, 6.4° N, 2919 m depth) on the Carlsberg Ridge, northwest Indian Ocean. Cells grew at 55-75 °C(optimum, 70 °C), at pH 6.0-9.0 (optimum, pH 6.0-7.0) and at NaCl concentrations of 1.5-4.5 % (w/v; optimum 3.0 %). Under optimal growth conditions, the generation time was around 85 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, carbohydrates, organic acids and one amino acid. It was anaerobic and facultatively dependent on elemental sulphur and various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulphate, thiosulfate or nitrate. The G+C content of its genomic DNA was 34.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that its closest relative was Thermosipho atlanticus DV1140T with 95.81 % 16S rRNA sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Thermosipho, for which the name Thermosipho ferrireducens sp. nov. is proposed. The type strain is strain JL129W03T (=KCTC 15905T;=MCCC 1A14213T).
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, Hubei, PR China
| | - Yang He
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, No. 36, Baocubei Road, Hangzhou 310012, Zhejiang, PR China
| | - Danling Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, Hubei, PR China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| |
Collapse
|
5
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
6
|
Li X, Song Y, Bian Y, Gu C, Yang X, Wang F, Jiang X. Insights into the mechanisms underlying efficient Rhizodegradation of PAHs in biochar-amended soil: From microbial communities to soil metabolomics. ENVIRONMENT INTERNATIONAL 2020; 144:105995. [PMID: 32758715 DOI: 10.1016/j.envint.2020.105995] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 05/15/2023]
Abstract
The combined effects of biochar amendment and the rhizosphere on the soil metabolic microbiome during the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil remain unknown. In this study, we attempted to characterize a PAH degradation network by coupling the direct PAH degradation with soil carbon cycling. From microbial community structure and functions to metabolic pathways, we revealed the modulation strategies by which biochar and the rhizosphere benefited PAH degradation in soil. Firstly, some PAH degraders were enriched by biochar and the rhizosphere, and their combination promoted the cooperation among these PAH degraders. Simultaneously, under the combined effects of biochar and the rhizosphere, the functional genes participating in upstream PAH degradation were greatly upregulated. Secondly, there were strong co-occurrences between soil microbial community members and metabolites, in particular, some PAH degraders and the metabolites, such as PAH degradation products or common carbon resources, were highlighted in the networks. It shows that the overall downstream carbon metabolism of PAH degradation was also greatly upregulated by the combined effects of biochar and plant roots, showing good survival of the soil microbiome and contributing to PAH biodegradation. Taken together, both soil carbon metabolism and direct contaminant biodegradation are likely to be modulated by the combined effects of biochar and plant roots, jointly benefitting to PAH degradation by soil microbiome. Our study is the first to link PAH degradation with native carbon metabolism by coupling sequencing and soil metabolomics technology, providing new insights into a systematic understanding of PAH degradation by indigenous soil microbiome and their networks.
Collapse
Affiliation(s)
- Xiaona Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglun Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Complete genome sequence of Anoxybacter fermentans DY22613 T, a piezophilic dissimilatory Fe(III)-reducing bacterium isolated from East Pacific Rise hydrothermal sulfides. Mar Genomics 2020; 53:100755. [PMID: 32883438 DOI: 10.1016/j.margen.2020.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
Anoxybacter fermentans DY22613T is a novel piezophilic dissimilatory iron(III)-reducing bacterium isolated from East Pacific Rise (EPR) hydrothermal sulfides. The strain shows very low 16S rRNA gene similarity (86.92%) with the Halanaerobiales, and represents at least a novel genus Anoxybacter within the class Clostridia. Here, we describe the first complete genome of strain DY22613T in this genus. The genome contains 3,557,532 bp with a G + C content of 35.88%. Genome sequence analysis of strain DY22613T reveals the presence of genes encoding riboflavin (ribBA,D,A,F,H), FAD‑hydrogenases, etc. are involved in dissimilatory iron(III)-reducing process. The genome will provide insights into the mechanism of dissimilatory iron(III)-reducing in strain DY22613T, and contribute to better understand the role of this group in the biogeochemistry cycling of iron in deep-sea hydrothermal fields.
Collapse
|
8
|
Li X, Zeng X, Qiu D, Zhang Z, Zhang X, Shao Z. Extracellular electron transfer in fermentative bacterium Anoxybacter fermentans DY22613 T isolated from deep-sea hydrothermal sulfides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137723. [PMID: 32208240 DOI: 10.1016/j.scitotenv.2020.137723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Dissimilatory Fe(III)-reducing bacteria (DIRBs) could reduce extracellular Fe(III) to Fe(II) via extracellular electron transfer (EET), playing an important role in biogeochemical cycling of Fe(III). Previous studies have noted the key role of multi-heme c-type cytochromes (MHCs) involved in EET by respiratory-type DIRBs, and proposed indirect electron transfer through the use of redox electron shuttles (e.g., flavins) or Fe(III)-chelation. However, knowledge about the EET of fermentative DIRBs was vitally scarce. Here, Anoxybacter fermentans DY22613T is a typical fermentative DIRB isolated from deep-sea hydrothermal sulfides, and it could utilize soluble Fe(III)-citrate and solid Fe(III)-bearing minerals as extracellular electron acceptors. Unlike respiratory-type DIRBs that utilize MHCs, this strain lacked MHCs to mediate EET. Besides, it did not adopt Fe(III)-chelation to mediate indirect EET. Nonetheless, genes encoding biosynthesis pathway of redox molecules (e.g., flavins) were found in its genome and their gene expression was up-regulated with Fe(III) reduction, suggesting redox molecules may mediate indirect EET by this strain. Subsequent physiological and biochemical tests further demonstrated endogenous riboflavin acted as main electron shuttles to mediate indirect EET by this strain, and menaquinone, indole played an assistant role in this process. Besides, this strain could employ exogenous humic acids to facilitate indirect EET. The mode of exogenous and endogenous redox molecules to co-mediate indirect EET by fermentative A. fermentans DY22613T, expands our knowledge about EET of fermentative DIRBs, and would contribute to better understand its ecological role in the biogeochemistry cycle of iron.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
| | - Donghua Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhao Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
| | - Xiaobo Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China.
| |
Collapse
|
9
|
Rubiano-Labrador C, Díaz-Cárdenas C, López G, Gómez J, Baena S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019; 23:793-808. [PMID: 31555903 DOI: 10.1007/s00792-019-01132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias D.T. y C., Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia.
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Javier Gómez
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| |
Collapse
|
10
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
11
|
Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. BIORESOURCE TECHNOLOGY 2018; 259:304-311. [PMID: 29573609 DOI: 10.1016/j.biortech.2018.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
While more and more investigations are done to study hyperthermophilic exoelectrogenic communities from environments, none have been performed yet on deep-sea hydrothermal vent. Samples of black smoker chimney from Rainbow site on the Atlantic mid-oceanic ridge have been harvested for enriching exoelectrogens in microbial electrolysis cells under hyperthermophilic (80 °C) condition. Two enrichments were performed in a BioElectrochemical System specially designed: one from direct inoculation of crushed chimney and the other one from inoculation of a pre-cultivation on iron (III) oxide. In both experiments, a current production was observed from 2.4 A/m2 to 5.8 A/m2 with a set anode potential of -0.110 V vs Ag/AgCl. Taxonomic affiliation of the exoelectrogen communities obtained on the electrode exhibited a specific enrichment of Archaea belonging to Thermococcales and Archeoglobales orders, even when both inocula were dominated by Bacteria.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Eléonore Frouin
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Emilie Pasero
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Sylvain Davidson
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France.
| |
Collapse
|
12
|
Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01491-15. [PMID: 26679595 PMCID: PMC4683240 DOI: 10.1128/genomea.01491-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter.
Collapse
|