1
|
Adenaya A, Spriahailo D, Berger M, Noster J, Milke F, Schulz C, Reinthaler T, Poehlein A, Wurl O, Ribas-Ribas M, Hamprecht A, Brinkhoff T. Occurrence of antibiotic-resistant bacteria in the sea surface microlayer of coastal waters in the southern North Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117259. [PMID: 39471667 DOI: 10.1016/j.ecoenv.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
The emergence of antibiotic-resistant bacteria in coastal waters is a global health problem posing potential risks to the health of humans who depend on coastal resources. Monitoring and increased efforts are needed to maintain the health of marine ecosystems. The sea surface microlayer (SML) is poorly studied for antibiotic resistance of the inhabiting bacteria. Therefore, we examined the antibiotic resistance patterns of 41 bacterial strains isolated from the SML in a harbor in the southern North Sea. The strains are affiliated with 17 genera typically found in the marine environment. Using the disc diffusion assay, we found extensive resistance, particularly to gentamycin, kanamycin, nalidixic acid, penicillin, sulfadimidine, and streptomycin. A broth microdilution assay showed high minimum inhibitory concentrations (MICs) for most isolates for amikacin, aztreonam, ceftazidime, cefepime, minocycline, and tobramycin. Genome analysis of three strains affiliated with the genera Pseudoseohaeicola, Nereida, and Vibrio, all showing a highly resistant phenotype, revealed the presence of 57, 42, and 90 genes, respectively, associated with antibiotic resistance. Over 50 % of these genes are multidrug efflux pumps. Our study shows that the SML in anthropogenic-influenced coastal regions harbors a wide diversity of antibiotic-resistant bacteria equipped with a broad range of multidrug efflux pumps.
Collapse
Affiliation(s)
- Adenike Adenaya
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany; Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany.
| | - Dmytro Spriahailo
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Janina Noster
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Christiane Schulz
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Oliver Wurl
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Mariana Ribas-Ribas
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Axel Hamprecht
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany.
| |
Collapse
|
2
|
Jiang Y, Li Z. Identification and genomic analysis of Pseudosulfitobacter koreense sp. nov. isolated from toxin-producing dinoflagellate Alexandrium pacificum. Arch Microbiol 2023; 205:245. [PMID: 37209217 DOI: 10.1007/s00203-023-03583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The bacterial strain AP-MA-4T isolated from the marine dinoflagellate Alexandrium pacificum (KCTC AG60911), was subjected to a taxonomic analysis. Cells of strain AP-MA-4T were Gram-stain-negative, aerobic, rod-shaped, optimum growth at 20 °C, pH 7.0, in the presence of 5% (w/v) NaCl. Strain AP-MA-4T shared the highest 16S rRNA gene sequence similarity to Pseudosulfitobacter pseudonitzschiae DSM 26824T (98.5%), followed by Ascidiaceihabitans donghaensis RSS1-M3T (96.3%), Pseudoseohaeicola caenipelagi BS-W13T (95.7%), and Sulfitobacter pontiacus CHLG 10T (95.3%). Based on 16S rRNA phylogeny, strain AP-MA-4T is phylogenetically closely related to Pseudosulfitobacter pseudonitzschiae (type species of Pseudosulfitobacter) and could be distinguished from the type species based on their phenotypic properties. The genome length of strain AP-MA-4T was 3.48 Mbp with a 62.9% G + C content. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain AP-MA-4 T and its closely related type strains were 72.2-83.3 and 18.2-27.6%, respectively. Summed feature 8 (C18:1ω7c and/or C18:1ω6c) was identified the major fatty acids (> 10%). Phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phospholipid (PL) were demonstrated as the major polar lipids. The major respiratory quinone is ubiquinone-10 (Q-10). Based on genotypic and phenotypic features, strain AP-MA-4T (= KCTC 92289T = GDMCC 1.3585T) represents a new Pseudosulfitobacter species, in which the name Pseudosulfitobacter koreense sp. nov. is proposed.
Collapse
Affiliation(s)
- Yue Jiang
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Roseitranquillus sediminis gen. nov., sp. nov. a novel genus and species of the family Rhodobacteraceae, isolated from sediment of an Arctic fjord. Antonie van Leeuwenhoek 2021; 114:2147-2162. [PMID: 34643814 DOI: 10.1007/s10482-021-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
A Gram-negative, aerobic, non-motile, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain MCCB 386T was isolated from sediment samples collected from Kongsfjorden, an Arctic fjord. The strain MCCB 386T showed growth at 4-37 °C (optimum 27°C) in the presence of 1-8% NaCl (w/v, optimum 3.5%) and at pH 6.0-8.0 (optimum pH 7.0). The major fatty acids were C18:1ω7c (54.0%) and 11-methyl C18:1ω7c (22.6%). The dominant respiratory quinone was Q-10. The major polar lipids comprised of phosphatidylcholine (PC), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphoglycolipid (PGL), one unidentified aminolipid, two glycolipids and two unidentified lipids. The genomic G+C content of the strain MCCB 386T was 68.1 mol%. The 16 S rRNA gene sequences based phylogenetic analysis of MCCB 386T showed that Psychromarinibacter halotolerans YBW34T (95.88%) is the most closely related species. In addition, overall genome relatedness indices (OGRI) of MCCB 386T with closely related strains were lower than threshold level for species and genus delineation. The analysis of Biosynthetic Gene clusters (BGCs) revealed the potential of this strain for production of novel bioactive secondary metabolites. As per polyphasic taxonomic characterisation, strain MCCB 386T represents a novel species of a novel genus for which the name Roseitranquillus sediminis gen. nov., sp. nov. is suggested. The type strain of the species is MCCB 386T (= JCM 33,538T= KACC 21,531T).
Collapse
|
4
|
Lee SD, Choe H, Kim JS, Kim IS. Kangsaoukella pontilimi gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from a tidal mudflat. Int J Syst Evol Microbiol 2020; 70:5235-5242. [PMID: 32853133 DOI: 10.1099/ijsem.0.004401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly aerobic, Gram-stain-negative, non-motile, ovoid- and rod-shaped bacterium, designated strain GH1-50T, was isolated from a tidal mudflat sample collected from Dongmak seashore on Gangwha Island, Republic of Korea. The organism showed growth at 20-40 °C (optimum, 30 °C), pH 7-8 (optimum, pH 7) and 2-6 % (w/v) NaCl (optimum, 5 %). The pufLM genes were present but bacteriochlorophyll a was not detected. The major isoprenoid quinone was Q-10. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, an unidentified aminolipid and five unidentified lipids. The predominant cellular fatty acids were C18 : 1 ω7c, C18 : 1 ω7c 11-methyl and C18 : 0. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that the isolate belonged to the family Rhodobacteraceae and was loosely associated with members of the recognized genera. The closest relative was the type strain of Pseudoruegeria marinistellae (96.8 % similarity) followed by Boseongicola aestuarii (96.4 %). Other members of the family shared 16S rRNA gene similarity values below 96.0 % to the novel isolate. The DNA G+C content calculated from the draft genome sequence was 64.0 %. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values between genome sequences of strain GH1-50T and all the type strains of the recognized taxa compared were <70.0, <84.1 and <20.5 %, respectively. Based on data obtained by a polyphasic approach, strain GH1-50T (=KCTC 72224T=NBRC 113929T) represents a novel species of a new genus in the family Rhodobacteraceae, for which the name Kangsaoukella pontilimi gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - Hanna Choe
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| |
Collapse
|
5
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
6
|
Hetharua B, Min D, Liao H, Lin L, Xu H, Tian Y. Litorivita pollutaquae gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae isolated from surface seawater of Xiamen Port, China. Int J Syst Evol Microbiol 2018; 68:3908-3913. [PMID: 30339119 DOI: 10.1099/ijsem.0.003084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative Rhodobacterales strain, designated as FSX-11T, was isolated from surface seawater of Xiamen port in China. Strain FSX-11T showed less than 96.5 % 16S rRNA gene sequence similarity to the type strains of species with validly published names. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate formed a distinct monophyletic clade within the family Rhodobacteriaceae and clustered distantly with the genera Thalassobius and Marivita. Cells of strain FSX-11T were non-motile, oval-shaped and facultative anaerobic. Optimal growth occurred at 20-30 °C, at pH 7.0-8.0 and in the presence of 2-3 % NaCl (w/v). The major respiratory quinone was ubiquinone-10. Summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0 were the major fatty acids. The DNA G+C content of strain FSX-11T was 58.7 mol%. On the basis of phylogenetic analysis, phenotypic and chemotaxonomic characteristics and 16S rRNA gene signature nucleotide patterns, strain FSX-11T represents a novel species in a novel genus within the family Rhodobacteraceae, for which the name Litorivita pollutaquae gen. nov., sp. nov. is proposed. The type strain is FSX-11T (=JCM 32715T=MCCC 1K03503T).
Collapse
Affiliation(s)
- Buce Hetharua
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Derong Min
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hu Liao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Li'an Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hong Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
7
|
Kandeliimicrobium roseum gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:2158-2164. [DOI: 10.1099/ijsem.0.002773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Guo LY, Ling SK, Li CM, Chen GJ, Du ZJ. Rhodosalinus sediminis gen. nov., sp. nov., isolated from marine saltern. Int J Syst Evol Microbiol 2017; 67:5108-5113. [PMID: 29043957 DOI: 10.1099/ijsem.0.002424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, moderately halophilic, motile, facultatively anaerobic and rod-shaped strain, designated WDN1C137T, was isolated from a marine saltern at Wendeng, PR China. Optimal growth occurred at 40 °C, pH 7.5 and with 7.0 % (w/v) NaCl. Q-10 was the sole respiratory quinone. The major cellular fatty acids (>10.0 %) in WDN1C137T were C18 : 1ω7c (46.2 %), cyclo C19 : 0ω8c (18.7 %) and C16 : 0 (12.3 %). The major polar lipids were phosphatidylglycerol, phosphoglycolipid, phosphatidylcholine, one unidentified glycolipid, one unidentified lipid, one unidentified aminolipid and two unidentified phospholipids. The genomic DNA G+C content was 70.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that WDN1C137T shared the highest similarity (94.5 %) to Roseivivax jejudonensis KCTC 42110T, followed by Roseivivax halodurans JCM 10272T (94.2 %) and Roseivivax roseus DSM 23042T (94.1 %). WDN1C137T formed a separate branch from the closely related genera Roseivivax, Loktanella, Paracoccus and Cribrihabitans within the family Rhodobacteraceae, which indicated that it represented a novel genus in the phylogenetic tree. On the basis of the data from the current polyphasic study, the isolate is proposed to represent a novel species of a novel genus within the family Rhodobacteraceae, with the name Rhodosalinus sediminis gen. nov., sp. nov. The type strain of the type species is WDN1C137T (=KCTC 52478T=MCCC 1H00170T).
Collapse
Affiliation(s)
- Ling-Yun Guo
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Si-Kai Ling
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Chang-Ming Li
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Guan-Jun Chen
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Zong-Jun Du
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
9
|
Qiao Y, Wang Y, Yang X, Liu J, Wu Y, Zhang XH. Psychromarinibacter halotolerans gen. nov., sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2017; 67:3518-3524. [PMID: 28866994 DOI: 10.1099/ijsem.0.002159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, motile, non-gliding, oxidase-positive, catalase-positive, rod-shaped bacterium, designated strain YBW34T, was isolated from seawater from the bottom of the Yellow Sea at station H12 (-73m in depth). Growth occurred at 10-45 °C (optimum 28 °C), in the presence of 1-12 % NaCl (w/v, optimum 4 %) and at pH 6.0-8.0 (optimum pH 7.0). The major fatty acids (>10 %) were C18 : 1 ω7c and C16 : 0. The major polar lipids comprised phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and three unidentified aminolipids. The major respiratory quinone was ubiquinone-10 (Q-10). The DNA G+C content of strain YBW34T was 64.2 mol%. The most closely related species was Tropicimonas isoalkanivorans JCM 14837T with 95.8 % sequence similarity in Alphaproteobacteria. It showed 16S rRNA gene sequence similarities of 93.03-95.49, 93.03-95.49 and 95.31-95.32 % to species of genera Rhodovulum, Lutimaribacter and Oceanicola, respectively. Nevertheless, strain YBW34T formed a distinct lineage in the trees which did not join the genera mentioned above in the phylogenetic dendrogram based on 16S rRNA gene sequences. The phenotypic, chemotaxonomic and phylogenetic data indicated that strain YBW34T represents a novel genus and species, for which the name Psychromarinibacter halotolerans gen. nov., sp. nov. is proposed. The type strain is YBW34T (=JCM 31462T=KCTC 52366T=MCCC 1K03203T).
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoting Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ji Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.,College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
10
|
Park S, Yoon SY, Ha MJ, Yoon JH. Jindonia aestuariivivens gen. nov., sp. nov., isolated from a tidal flat on the south-western sea in Republic of Korea. J Microbiol 2017; 55:421-427. [PMID: 28251548 DOI: 10.1007/s12275-017-6621-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
A Gram-stain-negative, aerobic, non-flagellated, and coccoid, ovoid or rod-shaped bacterium, designated JDTF-65T, was isolated from a tidal flat on the south-western sea in Republic of Korea. Strain JDTF-65T grew optimally at 25°C, at pH 7.0-8.0 and in the presence of 2.0% (w/v) NaCl. Strain JDTF-65T exhibited 16S rRNA gene sequence similarities of 97.1-97.6% to the type strains of 'Aliisedimentitalea scapharcae', Phaeobacter gallaeciensis, Phaeobacter inhibens, Leisingera aquimarina, Tropicibacter litoreus, Sulfitobacter pseudonitzschiae, and Pseudoseohaeicola caenipelagi. Phylogenetic trees based on 16S rRNA gene sequences showed that strain JDTF-65T forms an independent lineage within the radiation enclosed by the family Rhodobacteraceae. Strain JDTF-65T contained Q-10 as the predominant ubiquinone and C18:1 ω7c as the major fatty acid. The major polar lipids of strain JDTF-65T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminolipid, and one unidentified lipid. The DNA G+C content of strain JDTF-65T was 56.8 mol% and its DNA-DNA relatedness values with the type strains of the phylogenetically related species were 13-27%. Differential phenotypic properties revealed that strain JDTF-65T is separated from representatives of some phylogenetically related taxa. On the basis of the data presented, strain JDTF-65T represents a new genus and species within the family Rhodobacteraceae, for which the name Jindonia aestuariivivens gen. nov., sp. nov. is proposed. The type strain of Jindonia aestuariivivens is JDTF-65T (=KCTC 52564T =NBRC 112534T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 03063, Republic of Korea
| | - Sun Young Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 03063, Republic of Korea
| | - Min-Ji Ha
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 03063, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 03063, Republic of Korea.
| |
Collapse
|
11
|
Thongphrom C, Kim JH, Yoon JH, Bora N, Kim W. Marimonas arenosa gen. nov., sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67:121-126. [DOI: 10.1099/ijsem.0.001581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Chutimon Thongphrom
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nagamani Bora
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Crenn K, Serpin D, Lepleux C, Overmann J, Jeanthon C. Silicimonas algicola gen. nov., sp. nov., a member of the Roseobacter clade isolated from the cell surface of the marine diatom Thalassiosira delicatula. Int J Syst Evol Microbiol 2016; 66:4580-4588. [DOI: 10.1099/ijsem.0.001394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Klervi Crenn
- CNRS, Station Biologique de Roscoff, Adaptation and Diversité en Milieu Marin, Marine Phototrophic Prokaryotes Team, Roscoff, France
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Oceanic Plankton Group, Roscoff, France
| | - Delphine Serpin
- CNRS, Station Biologique de Roscoff, Adaptation and Diversité en Milieu Marin, Marine Phototrophic Prokaryotes Team, Roscoff, France
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Oceanic Plankton Group, Roscoff, France
| | - Cendrella Lepleux
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Jeanthon
- CNRS, Station Biologique de Roscoff, Adaptation and Diversité en Milieu Marin, Marine Phototrophic Prokaryotes Team, Roscoff, France
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Oceanic Plankton Group, Roscoff, France
| |
Collapse
|