1
|
De Meyer F, Carlier A. Ecotin: A versatile protease inhibitor of bacteria and eukaryotes. Front Microbiol 2023; 14:1114690. [PMID: 36760512 PMCID: PMC9904509 DOI: 10.3389/fmicb.2023.1114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Serine protease inhibitors are a large family of proteins involved in important pathways and processes, such as inflammatory responses and blood clotting. Most are characterized by a precise mode of action, thereby targeting a narrow range of protease substrates. However, the serine-protease inhibitor ecotin is able to inhibit a broad range of serine proteases that display a wide range of specificities. This specificity is driven by special structural features which allow unique flexibility upon binding to targets. Although frequently observed in many human/animal-associated bacteria, ecotin homologs may also be found in plant-associated taxa and environmental species. The purpose of this review is to provide an update on the biological importance, role in host-microbe interactions, and evolutionary relationship between ecotin orthologs isolated from Eukaryotic and Prokaryotic species across the Tree of Life.
Collapse
Affiliation(s)
- Frédéric De Meyer
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France,*Correspondence: Aurélien Carlier, ✉
| |
Collapse
|
2
|
Host genotype and exercise exhibit species-level selection for members of the gut bacterial communities in the mouse digestive system. Sci Rep 2020; 10:8984. [PMID: 32488198 PMCID: PMC7265280 DOI: 10.1038/s41598-020-65740-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian gut microbiome can potentially impact host health and disease state. It is known that the mouse-genome, eating-behavior, and exercise-status promotes higher taxonomic rank-level alterations (e.g. family to phyla-level) of the gut microbiota. Here, host genotype or activity status was investigated to determine if selection of individual bacterial species or strains could be discerned within the murine digestive system. For this study, the fecal bacterial community of adenylyl cyclase 5 knock-out (AC5KO, n = 7) mice or their wild-type (WT, n = 10) littermates under exercise or sedentary conditions were profiled by sequencing rRNA operons. AC5KO mice were chosen since this genotype displays enhanced longevity/exercise capacity and protects against cardiovascular/metabolic disease. Profiling of rRNA operons using the Oxford MinION yielded 65,706 2-D sequences (after size selection of 3.7-5.7 kb) which were screened against an NCBI 16S rRNA gene database. These sequences were binned into 1,566 different best BLAST hits (BBHs) and counted for each mouse sample. Non-metric multidimensional scaling (NMDS) of the gut microbial community demonstrated clustering by physical activity (p = 0.001) but not by host genotype. Additionally, sequence similarity and phylogenetic analysis demonstrated that different bacterial species (closely related to Muribaculum intestinale and Parasutterella excrementihominis) inhabit AC5KO or WT mice depending on activity status. Other bacterial species of the gut microbiota did not follow such patterning (e.g. Turicibacter sanguinis and Turicimonas muris). Our results support the need of improved taxonomic resolution for better characterization of bacterial communities to deepen our understanding of the role of the gut microbiome on host health.
Collapse
|
3
|
Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station. Appl Microbiol Biotechnol 2019; 103:4483-4497. [PMID: 31011775 DOI: 10.1007/s00253-019-09813-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
Several evolutionarily distinct, near full-length draft metagenome-resolved genomes (MRG), were assembled from sequences recovered from the International Space Station (ISS) environments. The retrieval of MRGs facilitated the exploration of a large collection of archived strains (~ 500 isolates) and assisted in isolating seven related strains. The whole genome sequences (WGS) of seven ISS strains exhibited 100% identity to the 4.85 × 106 bp of four MRGs. The "metagenome to phenome" approach led to the description of a novel bacterial genus from the ISS samples. The phylogenomics and traditional taxonomic approaches suggested that these seven ISS strains and four MRGs were not phylogenetically affiliated to any validly described genera of the family Erwiniaceae, but belong to a novel genus with the proposed name Kalamiella. Comparative genomic analyses of Kalamiella piersonii strains and MRGs showed genes associated with carbohydrate (348 genes), amino acid (384), RNA (59), and protein (214) metabolisms; membrane transport systems (108), pathways for biosynthesis of cofactors, vitamins, prosthetic groups, and pigments (179); as well as mechanisms for virulence, disease, and defense (50). Even though Kalamiella genome annotation and disc diffusion tests revealed multidrug resistance, the PathogenFinder algorithm predicted that K. piersonii strains are not human pathogens. This approach to isolating microbes allows for the characterization of functional pathways and their potential virulence properties that can directly affect human health. The isolation of novel strains from the ISS has broad applications in microbiology, not only because of concern for astronaut health but it might have a great potential for biotechnological relevance. The metagenome to phenome approach will help to improve our understanding of complex metabolic networks that control fundamental life processes under microgravity and in deep space.
Collapse
|
4
|
Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S, Avontuur JR, Beukes CW, Fourie G, Santana QC, Van Der Nest MA, Blom J, Steenkamp ET. The synergistic effect of concatenation in phylogenomics: the case in Pantoea. PeerJ 2019; 7:e6698. [PMID: 31024760 PMCID: PMC6474361 DOI: 10.7717/peerj.6698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanie Van Wyk
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Magriet A Van Der Nest
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Giessen, Germany
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
5
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Front Microbiol 2018; 9:113. [PMID: 29467735 PMCID: PMC5808187 DOI: 10.3389/fmicb.2018.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Genetic, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Munson E, Carroll KC. What's in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J Clin Microbiol 2017; 55:24-42. [PMID: 27795334 PMCID: PMC5228236 DOI: 10.1128/jcm.01379-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Janda JM. Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2015. Diagn Microbiol Infect Dis 2016; 86:123-7. [DOI: 10.1016/j.diagmicrobio.2016.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|