1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
Le VV, Ko SR, Kim MS, Kang M, Jeong S, Ahn CY. Sphingobium cyanobacteriorum sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2024; 74. [PMID: 38629946 DOI: 10.1099/ijsem.0.006339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
A novel Gram-stain-negative, yellow-pigmented, short rod-shaped bacterial strain, HBC34T, was isolated from a freshwater sample collected from Daechung Reservoir, Republic of Korea. The results of 16S rRNA gene sequence analysis indicated that HBC34T was affiliated with the genus Sphingobium and shared the highest sequence similarity to the type strains of Sphingobium vermicomposti (98.01 %), Sphingobium psychrophilum (97.87 %) and Sphingobium rhizovicinum (97.59 %). The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between HBC34T and species of the genus Sphingobium with validly published names were below 84.01 and 28.1 %, respectively. These values were lower than the accepted species-delineation thresholds, supporting its recognition as representing a novel species of the genus Sphingobium. The major fatty acids (>10 % of the total fatty acids) were identified as summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The main polar lipids were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, two phospholipids and two unidentified polar lipids. The respiratory quinone was Q-10. The genomic DNA G+C content of HBC34T was 64.04 %. The polyphasic evidence supports the classification of HBC34T as the type strain of a novel species of the genus Sphingobium, for which the name Sphingobium cyanobacteriorum sp. nov is proposed. The type strain is HBC34T (= KCTC 8002T= LMG 33140T).
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Seong Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Huq MA, Lee SY, Moon B, Ma J, Siddiqi MZ, Srinivasan S, Rahman MS, Akter S. Sphingobium agri sp. nov., isolated from rhizospheric soil of eggplant. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787389 DOI: 10.1099/ijsem.0.006074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
A Gram-stain-negative, aerobic, short rod-shaped and motile bacterial strain, designated MAH-33T, was isolated from rhizospheric soil of eggplant. The colonies were observed to be yellow-coloured, smooth, spherical and 0.1-0.3 mm in diameter when grown on TSA agar medium for 2 days. Strain MAH-33T was found to be able to grow at 10-40 °C, at pH 5.0-10.0 and at 0-3.0 % NaCl (w/v). The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of tyrosine and aesculin. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Sphingobium and to be closely related to Sphingobium quisquiliarum P25T (98.4 % similarity), Sphingobium mellinum WI4T (97.8 %), Sphingobium fuliginis TKPT (97.3 %) and Sphingobium herbicidovorans NBRC 16415T (96.9 %). The novel strain MAH-33T has a draft genome size of 3 908 768 bp (28 contigs), annotated with 3689 protein-coding genes, 45 tRNA and three rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-33T and closely related type strains were in the range of 79.8-81.6 % and 23.2-24.5 %, respectively. The genomic DNA G+C content was determined to be 62.2 %. The predominant isoprenoid quinone was ubiquinone 10. The major fatty acids were identified as C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipids identified in strain MAH-33T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine; one unknown phospholipid and one unknown lipid. On the basis of digital DNA-DNA hybridization, ANI value, genotypic analysis, chemotaxonomic and physiological data, strain MAH-33T represents a novel species within the genus Sphingobium, for which the name Sphingobium agri sp. nov. is proposed, with MAH-33T (=KACC 19973T = CGMCC 1.16609T) as the type strain.
Collapse
Affiliation(s)
- Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Juncai Ma
- World Data Center for Microorganisms (WDCM); Institute of Microbiology, Chinese Academy of Sciences (IMCAS), Beijing, PR China
| | - Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 461-701, Republic of Korea
| |
Collapse
|
4
|
Zhang Q, Wang M, Ma X, Li Z, Jiang C, Pan Y, Zeng Q. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front Cell Infect Microbiol 2022; 12:984537. [PMID: 36189367 PMCID: PMC9523120 DOI: 10.3389/fcimb.2022.984537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenghui Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Zhang Q, Pan Y, Wang M, Sun L, Xi Y, Li M, Zeng Q. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak ( Bos grunniens). PeerJ 2022; 10:e13177. [PMID: 35368335 PMCID: PMC8973462 DOI: 10.7717/peerj.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine endometritis is an inflammatory disease of the uterus that occurs after parturition and can result in the destruction of uterine microecology, disruption of hormone secretion, and even infertility. Problems such as antibiotic residues, pathogen resistance, and microbiota dysbiosis caused by conventional antibiotic therapy cannot be ignored. According to the microecological balance theory, probiotics have the potential to prevent or cure endometritis in cattle. Probiotics can positively influence host physiology by regulating microecological imbalance, modulating immunity, and antagonizing pathogens. Since some probiotics contribute to host health only in their specific natural niches, lactic acid bacteria (LAB) from the vagina may have better potential to fight against vaginal and uterine infection. The yak (Bos grunniens) is an ancient and primitive livestock animal that is adapted to high altitude and harsh environments (cold, nutritional deficiencies, and hypoxia). However, to our knowledge, there have been no studies on yak vaginal LAB. Therefore, the purpose of this study was to isolate vaginal LAB from yak, evaluate and compare the probiotic potential and safety of the isolates, and help establish the probiotics library that can be used in the prevention and/or treatment of endometritis. Twenty-five vaginal swabs were collected from healthy yak and cultured in deMan, Rogosa, and Sharpe (MRS) broth. Tentative LAB strains were preliminarily determined through calcium dissolving zone and morphological identification, and the strains were then identified using 16S rRNA gene sequencing. The probiotics of the isolates were detected using cell aggregation, hydrophobicity, resistance to acid and bile salt, adhesion, and antibacterial activities. Additionally, antimicrobial susceptibility, hemolytic activity, and detection of potential virulence factors were determined in order to confirm the safety of these strains. Five isolates were identified: Leuconostoc mesenteroides, Lactobacillus plantarum, Enterococcus hirae, Lacticaseibacillus camelliae, and Lactobacillus mucosae. All isolates had certain growth resistance, aggregation ability, effective antimicrobial potency against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium, were sensitive to most antibiotics, and could effectively adhere to bovine endometrial epithelial cells (BEECs). None of the isolates showed hemolytic activity or harbored virulence factors. Our results indicated that the five isolates have considerable potential as probiotics that can be used to prevent and/or treat bovine endometritis. We speculate that a mixture of YD6, YD9, and YD25 may yield better results, although this would require extensive experiments to verify.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China,Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liang Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022; 11:foods11050757. [PMID: 35267390 PMCID: PMC8909736 DOI: 10.3390/foods11050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Seafood is an excellent source of nutrients, essential for a healthy diet, ranging from proteins and fatty acids to vitamins and minerals. Seafood products are highly perishable foods due to their nutritional characteristics and composition. The application of nontoxic, natural, and edible preservatives to extend the shelf-life and inhibit bacterial proliferation of several foods has been a hot topic. Consequently, this work aimed to perform the microbiological characterization of squid and shrimp skewers during their shelf-life (five days) and evaluate the susceptibility of randomly isolated microorganisms to several natural edible compounds so that their application for the preservation and shelf-life extension of the product might be analyzed in the future. The product had considerably high total microorganisms loads of about 5 log CFU/g at day zero and 9 log CFU/g at day five. In addition, high bacterial counts of Pseudomonas spp., Enterobacterales, and lactic acid bacteria (LAB) were found, especially on the last day of storage, being Pseudomonas the dominant genus. However, no Escherichia coli or Listeria monocytogenes were detected on the analyzed samples. One hundred bacterial isolates were randomly selected and identified through 16s rRNA sequencing, resulting in the detection of several Enterobacterales, Pseudomonas spp., and LAB. The antibacterial activity of carvacrol, olive leaf extract, limonene, Citrox®, different chitosans, and ethanolic propolis extracts was evaluated by the agar diffusion method, and the minimum inhibitory concentration was determined only for Citrox® since only this solution could inhibit all the identified isolates. At concentrations higher than or equal to 1.69% (v/v), Citrox® demonstrated bacteriostatic and bactericidal activity to 97% and 3% of the isolates, respectively. To our knowledge, there are no available data about the effectiveness of this commercial product on seafood isolates. Although preliminary, this study showed evidence that Citrox® has the potential to be used as a natural preservative in these seafood products, improving food safety and quality while reducing waste. However, further studies are required, such as developing a Citrox®-based coating and its application on this matrix to validate its antimicrobial effect.
Collapse
|
7
|
Barbosa CD, Trovatti Uetanabaro AP, Rodrigues Santos WC, Caetano RG, Albano H, Kato R, Cosenza GP, Azeredo A, Góes-Neto A, Rosa CA, Teixeira P, Alvarenga VO, Alves Lacerda IC. Microbial–physicochemical integrated analysis of kombucha fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Description of Sphingobium psychrophilum sp. nov., a cold-adapted bacterium isolated from Arctic soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 33595429 DOI: 10.1099/ijsem.0.004705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A yellow-coloured, Gram-stain-negative, non-sporulating, psychrotolerant and motile bacterium, designated AR-3-1T, was isolated from the Arctic soil of Cambridge Bay, Nunavut, Canada. Strain AR-3-1T could grow at 4-32 °C and pH 5.0- 11.0. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain AR-3-1T formed a lineage within the family Sphingomonadaceae and clustered as a member of the genus Sphingobium. The closest members within this genus were Sphingobium cupriresistens CU4T (98.1 % sequence similarity), Sphingobium vermicomposti VC-230T (97.6 %) and Sphingobium lactosutens DS20T (97.5 %). The only respiratory quinone was the ubiquinone Q-10. Spermidine was the predominant polyamine. The principal cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C16 : 0 and C14 : 0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid and phosphoglycolipid. The DNA G+C content was 63.1 %. The average nucleotide identity and in silico DNA-DNA hybridization relatedness values between strain AR-3-1T and its most closely related genus members were ≤89.6 and 39.6 %, respectively. The genome was 5 162 327 bp long, with 83 scaffolds and 4824 protein-coding genes. The genome showed six putative biosynthetic gene clusters responsible for various secondary metabolites. Based on this polyphasic study, strain AR-3-1T represents a novel species within the genus Sphingobium, for which the name Sphingobium psychrophilum sp. nov. is proposed. The type strain is AR-3-1T (=KACC 21613T=NBRC 114604T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City 30019, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
9
|
Screening of Bacteriocinogenic Lactic Acid Bacteria and Their Characterization as Potential Probiotics. Microorganisms 2020; 8:microorganisms8030393. [PMID: 32168967 PMCID: PMC7142618 DOI: 10.3390/microorganisms8030393] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Probiotics are living microorganisms used as nutritional additives that confer health benefits on the host. Their use in food products is very attractive, especially if they could also inhibit important foodborne pathogens. In this study, antimicrobial activity against several foodborne pathogens was screened for 280 lactic acid bacteria (LAB) isolated from different food products and the probiotic characteristics of bacteriocinogenic isolates were evaluated. Seven out of 280 LAB isolates were selected due to their bacteriocinogenic properties and identified by 16S rRNA gene sequence analysis as Pediococcus pentosaceus (n = 6) and Lactobacillus plantarum (n = 1). Virulence factors and antibiotic resistances were not detected for any of the isolates. Except for L. plantarum R23, all the isolates were able to survive through the simulated gastrointestinal tract conditions. Only P. pentosaceus CFF4 was able to adhere to Caco-2 cells after the simulated gastrointestinal tract passage. In conclusion, even though in vivo studies should be performed, P. pentosaceus CFF4, which was also able to inhibit the growth of foodborne pathogens in vitro, seems to be a potential probiotic to be used in the food industry.
Collapse
|
10
|
Barbosa J, Albano H, Silva C, Teixeira P. Microbiological contamination of reusable plastic bags for food transportation. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Huq MA. Sphingobium chungangianum sp. nov., isolated from rhizosphere of Pinus koraiensis. Antonie van Leeuwenhoek 2019; 112:1341-1348. [PMID: 30997587 DOI: 10.1007/s10482-019-01266-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/12/2019] [Indexed: 11/27/2022]
Abstract
A novel Gram-staining negative, yellow-pigmented, non-motile, aerobic and rod-shaped bacterium, designated MAH-11T, was isolated from rhizosphere of Pinus koraiensis and was characterised by using a polyphasic taxonomic approach. The colonies were smooth, circular and 0.3-1.0 mm in diameter when grown on R2A agar for 3 days. The strain was positive for both catalase and oxidase tests. Optimum growth temperature and pH were 28-30 °C and 7.0, respectively. Cell growth occurs on R2A agar, nutrient agar, Luria-Bertani agar and tryptone soya agar but not on MacConkey agar. The novel strain was found to be able to hydrolyse esculin but not casein, gelatin, starch, L-tyrosine, DNA, L-arginine, urea, Tween 20 and Tween 80. On the basis of 16S rRNA gene sequence analysis, strain MAH-11T belongs to the genus Sphingobium and is closely related to Sphingobium quisquiliarum P25T (98.1%), Sphingobium vermicomposti VC-230T (97.8%), Sphingobium mellinum WI4T (97.5%), Sphingobium barthaii KK22T (97.2%) and Sphingobium fuliginis TKPT (97.2%). In DNA-DNA hybridization tests, the DNA relatedness values between strain MAH-11T and its close phylogenetic neighbors were below 45.0%. The DNA G+C content was 64.5 mol% and the predominant respiratory quinone was identified as ubiquinone-10. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C16:0. The DNA-DNA hybridization results in combination with chemotaxonomic and physiological data demonstrated that strain MAH-11T represents a novel species within the genus Sphingobium, for which the name Sphingobium chungangianum is proposed. The type strain is MAH-11T (= KACC 19836T = CGMCC 1.13749T).
Collapse
Affiliation(s)
- Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
12
|
Nguyen TM, Kim J. Sphingobium aromaticivastans sp. nov., a novel aniline- and benzene-degrading, and antimicrobial compound producing bacterium. Arch Microbiol 2018; 201:155-161. [PMID: 30560286 DOI: 10.1007/s00203-018-1611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
A strictly aerobic, orange-pigmented strain was isolated and designated as UCM-25T. This strain is capable of degrading aniline and benzene, while is also producing antimicrobial compounds which inhibit the growth of some common pathogenic microbes. A near full-length 16S rRNA gene sequence revealed similarity to Sphingobium chlorophenolicum NBRC 16172T (98.6%). The level of DNA-DNA hybridization between the new isolate and the related species suggests UCM-25T to be a new species belonging to the genus Sphingobium. The bacterial cells contained phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, three unidentified polar lipids, and an unidentified aminophospholipid. Ubiquinone Q-10 was the major quinone and spermidine was the major polyamine. The G+C content in the DNA of strain UCM-25T was 62.9 mol%. Cells contained summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, and C14:0 2-OH as major fatty acids. Based on the comparison of phenotypic, genotypic, and chemotaxonomic characteristics, strain UCM-25T represents a new member of the genus Sphingobium, for which the name S. aromaticivastans sp. nov. is proposed. The type strain is UCM-25T (=KACC 19288T =DSM 105181T).
Collapse
Affiliation(s)
- Tuan Manh Nguyen
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do, 16227, Republic of Korea
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang commune, Thai Nguyen, Vietnam
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
13
|
Lee JC, Song JS, Whang KS. Sphingobium pinisoli sp. nov., isolated from the rhizosphere soil of a Korean native pine tree. Antonie van Leeuwenhoek 2018; 112:815-825. [PMID: 30565024 DOI: 10.1007/s10482-018-01215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
A Gram-stain negative, aromatic compound degrading bacterium, designated strain ASA28T, was isolated from the rhizosphere soil of a pine tree at Anmyon island, Taean in Korea. Strain ASA28T was found to be strictly aerobic, non-motile, short rods which can grow at 15-28 °C (optimum, 25-28 °C), at pH 5.0-11.0 (optimum, pH 7.0) and at salinities of 0-1.0% (w/v) NaCl (optimum, 0% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain ASA28T belongs to the genus Sphingobium, showing high sequence similarity to Sphingobium scionense WP01T (97.8%), Sphingobium vermicocomposti VC-230T (96.8%), Sphingobium yanoikuyae ATCC 51230T (96.5%) and Sphingobium herbicidovorans MHT (95.6%). The predominant ubiquinone and polyamine components were identified as Q-10 and spermidine, respectively. The major fatty acids were identified as C18:1ω7c, C16:0, C14:0 2-OH and C16:1ω7c and/or C15:0 iso 2-OH. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, sphingoglycolipid, phosphoglycolipid, four unidentified aminophospholipids, an unidentified aminolipid, two unidentified phospholipids and six unidentified lipids. The DNA G+C content of this novel isolate was determined to be 63.0 mol%. DNA-DNA relatedness between strain ASA28T and S. herbicidovorans KCTC 2939T, S. vermicocomposti DSM 21299T and S. scionense DSM 19371T was determined to be 32 ± 5%, 30 ± 4% and 25 ± 5%, respectively. On the basis of the phylogenetic, phenotypic and chemotaxonomic analyses in this study, strain ASA28T is considered to represent a novel species of the genus Sphingobium, for which the name Sphingobium pinisoli sp. nov. is proposed. The type strain is ASA28T (= KACC 18700T = NBRC 112246T).
Collapse
Affiliation(s)
- Jae-Chan Lee
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea.,Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Jun-Soo Song
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Kyung-Sook Whang
- Institute of Microbial Ecology and Resources, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea. .,Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea.
| |
Collapse
|
14
|
Huq MA, Akter S, Siddiqi MZ, Balusamy SR, Natarajan S, Yoon JH, Lee SY. Sphingobium tyrosinilyticum sp. nov., a tyrosine hydrolyzing bacterium isolated from Korean radish garden. Arch Microbiol 2018; 200:1143-1149. [PMID: 29869295 DOI: 10.1007/s00203-018-1531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
A yellow-pigmented novel bacterial strain, MAH-12T, was isolated from a soil sample of Korean radish garden and was characterized using a polyphasic approach. Cells were Gram-staining negative, non-motile and rod-shaped. The strain was aerobic, catalase positive, optimum growth temperature and pH were 28-30 °C and 6.0, respectively. The novel strain is able to hydrolyze L-tyrosine, starch, esculin and 4-nitrophenyl-β-D-galactopyranoside. On the basis of 16S rRNA gene sequence analysis, strain MAH-12T belongs to the genus Sphingobium and is most closely related to several Sphingobium type strains (97.2-97.8%). In DNA-DNA hybridization tests, the DNA relatedness between strain MAH-12T and its closest phylogenetic neighbors was below 45.0%. The DNA G + C content was 64.0 mol% and the predominant respiratory quinone was ubiquinone-10. The major cellular fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0. The DNA-DNA hybridization results and results of the genotypic analysis in combination with chemotaxonomic and physiological data demonstrated that strain MAH-12T represented a novel species within the genus Sphingobium, for which the name Sphingobium tyrosinilyticum is proposed. The type strain is MAH-12T (= KACC 19297T = CGMCC 1.16225T). The NCBI GenBank accession number for the 16S rRNA gene sequence of strain MAH-12T is KY964278 and the digital protologue database taxon number of strain MAH-12T is TA00463.
Collapse
Affiliation(s)
- Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| | - Shahina Akter
- Department of Horticultural Life Science, Hankyong National University, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jae-Hyun Yoon
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
15
|
Chaudhary DK, Jeong SW, Kim J. Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:2986-2993. [DOI: 10.1099/ijsem.0.002064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan University, Kunsan, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
16
|
Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, Sessitsch A. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol 2016; 93:fiw242. [PMID: 27940644 DOI: 10.1093/femsec/fiw242] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 12/04/2016] [Indexed: 11/13/2022] Open
Abstract
The rhizosphere hosts a rich microflora supporting plant nutrition and health. We examined bacterial rhizosphere microbiota of Solanum tuberosum grown in its center of origin, the Central Andean Highlands, at different vegetation stages and sites at altitudes ranging from 3245 to 4070 m.a.s.l., differing in soil characteristics, climate and the agricultural practices by 454 sequence analysis of 16S rRNA genes. We observed that the taxonomic composition of bacteria repeatedly occurring at particular stages of plant development was almost unaffected by highly diverse environmental conditions. A detailed statistical analysis on the operational taxonomic unit (OTU) level, representing bacterial species, revealed a complex community structure of the rhizosphere. We identified an opportunistic microbiome which comprises OTUs that occur randomly or under specific environmental conditions. In contrast, core microbiome members were found at all sites. The 'stable' component of the core microbiome consisted of few ubiquitous OTUs that were continuously abundant in all samples and vegetation stages, whereas the 'dynamic' component comprised OTUs that were enriched at specific vegetation stages.
Collapse
Affiliation(s)
- Stefan Pfeiffer
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, Bioresources Unit, Konrad-Lorenz Straße 24, A-3430 Tulln, Austria
| | - Birgit Mitter
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, Bioresources Unit, Konrad-Lorenz Straße 24, A-3430 Tulln, Austria
| | - Andreas Oswald
- Integrated Crop Management Division, International Potato Center (CIP), La Molina, Lima, Peru.,Agroforestry and Sustainable Agriculture Program, CATIE, Turrialba, 30501 Costa Rica
| | - Brigitte Schloter-Hai
- Research Unit Environmental Genomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, Bioresources Unit, Konrad-Lorenz Straße 24, A-3430 Tulln, Austria
| |
Collapse
|
17
|
Narciso-da-Rocha C, Manaia CM. Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:1-9. [PMID: 27131885 DOI: 10.1016/j.scitotenv.2016.04.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
18
|
Sphingobium endophyticus sp. nov., isolated from the root of Hylomecon japonica. Antonie van Leeuwenhoek 2015; 107:1001-8. [PMID: 25623892 DOI: 10.1007/s10482-015-0392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
A yellow-pigmented bacterium, designated strain GZGR-4(T), was isolated from the root of Hylomecon japonica (Thunb.) Prantl et Kündig collected from Taibai Mountain in Shaanxi Province, north-west China. Cells of strain GZGR-4(T) were Gram-negative, rod-shaped, strictly aerobic, non-endospore-forming and non-motile. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GZGR-4(T) is a member of the genus Sphingobium, exhibiting the highest sequence similarity to Sphingobium aromaticiconvertens DSM 12677(T) (97.3 %). 16S rRNA gene sequence similarities between strain GZGR-4(T) and the type strains of other Sphingobium species with validly published names ranged from 93.4-96.5 %. The predominant respiratory quinone of strain GZGR-4(T) was ubiquinone-10 (Q-10) and the major cellular fatty acids were summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C16:0 and C14:0 2-OH. Spermidine was the major polyamine. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, one unidentified phosphoglycolipid, one unidentified phospholipid, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 63.6 mol%. DNA-DNA relatedness for strain GZGR-4(T) with respect to its closest phylogenetic relative S. aromaticiconvertens DSM 12677(T) was 22.6 ± 5.3 %. On the basis of the polyphasic taxonomic data presented, strain GZGR-4(T) is considered to represent a novel species of the genus Sphingobium, for which the name Sphingobium endophyticus sp. nov. is proposed. The type strain is GZGR-4(T) (=CCTCC AB 2013305(T) = KCTC 32447(T)).
Collapse
|
19
|
Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:127-135. [PMID: 23892027 DOI: 10.1016/j.scitotenv.2013.06.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to infer about the modes and extent of dispersion of Sphingomonadaceae via tap water. Sphingomonadaceae isolated from tap water samples in different places of a hospital were compared, based on intra-species genetic variability and antibiotic resistance phenotypes. These isolates were also compared with others isolated before from houses and dental chairs, served by the same municipal water supply system. Sphingomonadaceae from hospital tap water comprised members of the genera Sphingomonas, Sphingobium, Novosphingobium and Blastomonas. In general, distinct genotypes of Sphingomonadaceae were detected in different hospital areas and in tap water outside the hospital, suggesting these bacteria are not persistent or widespread in the urban water distribution system. Possible intrinsic antibiotic resistance, observed in most or all members of the family or of a genus, was observed for colistin in Sphingomonadaceae, aminoglycosides in the genus Blastomonas and beta-lactams in the genus Sphingobium. Possible acquired resistance phenotypes, not common to all members of a given species, comprised fluoroquinolones, cephalosporins and sulphonamides. Although the potential of Sphingomonadaceae as opportunistic pathogens may be low, the capacity of these bacteria to thrive in water supply systems, combined with the intrinsic or acquired antibiotic resistance, may raise the risk associated with their occurrence in hospital tap water.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | | | | |
Collapse
|
20
|
Li L, Liu H, Shi Z, Wang G. Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus
Sphingobium. Int J Syst Evol Microbiol 2013; 63:604-609. [DOI: 10.1099/ijs.0.040865-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, copper-resistant bacterium, designated strain CU4T, was isolated from copper mine soil in Daye, China. Phylogenetic analysis based on 16S rRNA gene sequences showed highest similarity to
Sphingobium rhizovicinum
CC-FH12-1T (98.4 %), followed by
Sphingobium francense
Sp+T (97.2 %),
Sphingobium japonicum
UT26T (97.1 %),
Sphingobium abikonense
NBRC 16140T (97.0 %),
Sphingobium xenophagum
DSM 6383T (96.9 %) and
Sphingobium yanoikuyae
DSM 7462T (95.5 %). The major fatty acids (>5 %) were summed feature 7 (C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t), summed feature 4 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C14 : 0 2-OH, and the predominant quinone was ubiquinone Q-10. Spermidine was the major polyamine component. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidyldimethylethanolamine and phosphatidylcholine. The genomic DNA G+C content of strain CU4T was 64.9 mol%. Comparison of DNA–DNA hybridization, phenotypic and chemotaxonomic characteristics between strain CU4T and phylogenetically related strains revealed that the new isolate represents a novel species of the genus
Sphingobium
, for which the name Sphingobium cupriresistens sp. nov. is proposed. The type strain is CU4T ( = KCTC 23865T = CCTCC AB 2011146T). An emended description of the genus
Sphingobium
is also proposed.
Collapse
Affiliation(s)
- Liqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongliang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zunji Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
21
|
Wang BZ, Guo P, Zheng JW, Hang BJ, Li L, He J, Li SP. Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 2011; 61:1776-1780. [DOI: 10.1099/ijs.0.023309-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A synthetic pyrethroid (SP)-degrading bacterial strain, designated JZ-1T, was isolated from activated sludge of a SP-manufacturing wastewater treatment facility and studied using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JZ-1T belonged to the genus Sphingobium, showing highest sequence similarities to Sphingobium faniae DSM 21829T (98.6 %), Sphingobium cloacae JCM 10874T (98.5 %), Sphingobium vermicomposti DSM 21299T (97.4 %) and Sphingobium ummariense CCM 7431T (96.9 %). The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of the cellular fatty acids C18 : 1ω7c, C19 : 0 cyclo ω8c, 11 methyl C18 : 1ω7c, C16 : 0 and C14 : 0 2-OH, and the G+C content of the genomic DNA also supported the affiliation of the strain with the genus Sphingobium. Strain JZ-1T showed low DNA–DNA relatedness values with S. faniae DSM 21829T (30.2 %), S. cloacae JCM 10874T (23.3 %), S. vermicomposti DSM 21299T (10.9 %) and S. ummariense CCM 7431T (7.9 %). Based on its phylogenetic position and its phenotypic and genotypic properties, strain JZ-1T represents a novel species of the genus Sphingobium, for which the name Sphingobium wenxiniae sp. nov. is proposed. The type strain is JZ-1T ( = CGMCC 1.7748T = DSM 21828T).
Collapse
Affiliation(s)
- Bao-Zhan Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Peng Guo
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jin-Wei Zheng
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bao-Jian Hang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lian Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shun-Peng Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
22
|
Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 2011; 77:5697-706. [PMID: 21705522 DOI: 10.1128/aem.00579-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.
Collapse
|