1
|
Pereira-Mora L, Guerrero LD, Erijman L, Fernández-Scavino A. Tartrate fermentation with H 2 production by a new member of Sporomusaceae enriched from rice paddy soil. Appl Environ Microbiol 2024; 90:e0235123. [PMID: 38517167 PMCID: PMC11026083 DOI: 10.1128/aem.02351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.
Collapse
Affiliation(s)
- Luciana Pereira-Mora
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Microbiología del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Leandro D. Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Oliveira JMS, Poulsen JS, Foresti E, Nielsen JL. Microbial communities and metabolic pathways involved in reductive decolorization of an azo dye in a two-stage AD system. CHEMOSPHERE 2023; 310:136731. [PMID: 36209855 DOI: 10.1016/j.chemosphere.2022.136731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Multiple stage anaerobic system was found to be an effective strategy for reductive decolorization of azo dyes in the presence of sulfate. Bulk color removal (56-90%) was achieved concomitant with acidogenic activity in the 1st-stage reactor (R1), while organic matter removal (≤100%) and sulfate reduction (≤100%) occurred predominantly in the 2nd-stage reactor (R2). However, azo dye reduction mechanism and metabolic routes involved remain unclear. The involved microbial communities and conditions affecting the azo dye removal in a two-stage anaerobic digestion (AD) system were elucidated using amplicon sequencing (16S rRNA, fhs, dsrB and mcrA) and correlation analysis. Reductive decolorization was found to be co-metabolic and mainly associated with hydrogen-producing pathways. We also found evidence of the involvement of an azoreductase from Lactococcus lactis. Bacterial community in R1 was sensitive and shifted in the presence of the azo dye, while microorganisms in R2 were more protected. Higher diversity of syntrophic-acetate oxidizers, sulfate reducers and methanogens in R2 highlights the role of the 2nd-stage in organic matter and sulfate removals, and these communities might be involved in further transformations of the azo dye reduction products. The results improve our understanding on the role of different microbial communities in anaerobic treatment of azo dyes and can help in the design of better solutions for the treatment of textile effluents.
Collapse
Affiliation(s)
- J M S Oliveira
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120, São Carlos, SP, Brazil; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - J S Poulsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - E Foresti
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120, São Carlos, SP, Brazil
| | - J L Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark.
| |
Collapse
|
3
|
Neupane S, Ghosh A, Gunther S, Martin K, Zurek L. Culicoidibacter larvae gen. nov., sp. nov., from the gastrointestinal tract of the biting midge ( Culicoides sonorensis) larva, belongs to a novel lineage Culicoidibacteraceae fam. nov., Culicoidibacterales ord. nov. and Culicoidibacteria classis nov. of the phylum Firmicutes. Int J Syst Evol Microbiol 2020; 70:6482-6490. [PMID: 33125314 DOI: 10.1099/ijsem.0.004543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain CS-1T, a novel facultative anaerobic bacterium, was isolated from the larval gastrointestinal tract of the biting midge, Culicoides sonorensis, a vector of the epizootic haemorrhagic disease virus and the bluetongue virus. Cells were Gram-stain-positive, non-motile, non-spore-forming, pleomorphic rods. Optimal growth occurred at pH 7.5 and 37 °C. The G+C content of the genomic DNA was 38.3 mol%, estimated by using HPLC. The dominant cellular fatty acids were C14 : 0 (45.9 %) and C16 : 0 (26.6 %). The polar lipid profile comprised glycolipids, diphosphatidylglycerol, phospholipids and phosphoglycolipids. Respiratory quinones were not detected. Strain CS-1T had very low 16S rRNA gene similarity to members of the phylum Firmicutes: Macrococcus canis KM45013T (85 % similarity) and Turicibacter sanguinis MOL361T (88 % similarity). Phylogenetic analysis based on 16S rRNA, rpoB, gyrB genes, and conserved protein sequences of the whole genome revealed that strain CS-1T was related to members of the classes Bacilli and Erysipelotrichia within the phylum Firmicutes. Furthermore, average nucleotide identity and digital DNA-DNA hybridization analyses of the whole genome revealed very low sequence similarity to species of Bacilli and Erysipelotrichaceae (Macrococcus canis KM45013T and Turicibacter sp. H121). These results indicate that strain CS-1T belongs to the phylum Firmicutes and represents a new species of a novel genus, family, order and class. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, we propose the novel taxon Culicoidibacter larvae gen. nov., sp. nov. with the type strain CS-1T (=CCUG 71726T=DSM 106607T) within the hereby new proposed novel family Culicoidibacteraceae fam. nov., new order Culicoidibacaterales ord. nov. and new class Culicoidibacteria classis nov. in the phylum Firmicutes.
Collapse
Affiliation(s)
- Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Anuradha Ghosh
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.,Department of Biology, Pittsburg State University, Pittsburg, KS, USA
| | - Sebastian Gunther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Karin Martin
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonotic Diseases, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Slobodkin AI, Slobodkina GB. Thermophilic prokaryotes from deep subterranean habitats. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011; 98:253-79. [DOI: 10.1007/s00114-011-0775-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/27/2023]
|
6
|
Ogg CD, Patel BKC. Caloramator mitchellensis sp. nov., a thermoanaerobe isolated from the geothermal waters of the Great Artesian Basin of Australia, and emended description of the genus Caloramator. Int J Syst Evol Microbiol 2010; 61:644-653. [PMID: 20400665 DOI: 10.1099/ijs.0.023655-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly thermophilic anaerobe, designated strain VF08(T), was isolated from a water sample collected from a Great Artesian Basin bore (registered bore number 22981) situated at Mitchell, QLD, Australia. Cells of isolate VF08(T) were slightly curved, non-sporulating rods (1.5-3.5 x 0.4-0.8 μm), which stained Gram-negative but possessed a Gram-positive cell-wall ultrastructure. The strain grew optimally in tryptone-yeast extract-glucose (TYEG) medium at 55 °C (temperature growth range between 37 and 60 °C) and a pH of 7 (pH growth range, 6.0-9.0). Yeast extract or tryptone was required for growth on glucose, fructose, xylose, maltose, sucrose, raffinose, cellobiose, ribose, pyruvate, tryptone, peptone, Casamino acids, amyl media and serine, but could also support growth as the sole carbon source. End products from glucose fermentation were acetate, ethanol, CO₂ and H₂. The strain reduced vanadium(V), but not iron(III), manganese(IV), elemental sulfur, sulfate, thiosulfate, sulfite, nitrate or nitrite in the presence of 0.2 % yeast extract, peptone, tryptone, glucose, sucrose and Casamino acids, but an increase in the growth rate or cell yield was not observed. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and ≥ 2 % NaCl (w/v). The G+C content of the DNA was 38.4 ± 0.8 mol% as determined by the thermal denaturation (T(m)) method. 16S rRNA gene sequence analysis revealed that isolate VF08(T) was a member of the genus Caloramator with Caloramator australicus and Caloramator fervidus (formerly Clostridium fervidus) being the closest relatives with similarity values of 85.0 and 86.1 %, respectively, when helix 6 nucleotides were included in the analysis, and 95.2 % and 94 %, respectively, when these nucleotides were masked from the analysis. Further analysis revealed that strain VF08(T) formed an individual cluster (cluster II) within the genus Caloramator and could be distinguished from other species within the genus Caloramator (clusters I, III and IV) on the basis of signature nucleotides and differences in phenotypic traits. These data suggest that strain VF08(T) is a novel species of the genus Caloramator, for which the name Caloramator mitchellensis sp. nov. is proposed. The type strain is VF08(T) (=JCM 15828(T)=KCTC 5735(T)). An emended description of the genus Caloramator is also provided.
Collapse
Affiliation(s)
- Christopher D Ogg
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Bharat K C Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
7
|
Ogg CD, Patel BKC. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters. Int J Syst Evol Microbiol 2009; 60:1394-1400. [PMID: 19671710 DOI: 10.1099/ijs.0.014670-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain AeB(T) is considered to represent a novel species in a new genus, for which the name Fervidicella metallireducens gen. nov., sp. nov. is proposed; the type strain is AeB(T) (=JCM 15555(T)=KCTC 5667(T)).
Collapse
Affiliation(s)
- Christopher D Ogg
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Bharat K C Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|