1
|
Djemouai N, Meklat A, Youcef KOH, Nacer A, Saadi SA, Verheecke-Vaessen C. Diversity and Bioactivity of Endophytic Actinobacteria Associated with the Roots of Artemisia herba-alba Asso from Algeria. Curr Microbiol 2024; 81:402. [PMID: 39392504 DOI: 10.1007/s00284-024-03932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The isolation of endophytic actinobacteria from the roots of wild populations of Artemisia herba-alba Asso, a medicinal plant collected from the arid lands of Algeria, is reported for the first time. Forty-five actinobacterial isolates were identified by molecular analysis and in vitro evaluated for antimicrobial activity and plant growth-promoting (PGP) abilities (1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, nitrogen fixation, phosphate and potassium solubilization, ammonia, and siderophores production). The phylogenetic relationships based on 16S rRNA gene sequences show that the genus Nocardioides (n = 23) was dominant in the sampled localities. The remaining actinobacterial isolates were identified as Promicromonospora (n = 11), Streptomyces (n = 6), Micromonopora (n = 3), and Saccharothrix (n = 2). Only six (13.33%) strains (five Streptomyces and one Saccharothrix species) were antagonistic in vitro against at least one or more indicator microorganisms. The antimicrobial activity of actinobacterial strains targeted mainly Gram-positive bacteria. The results demonstrate that more than 73% of the isolated strains had ACC deaminase activity, could fix atmospheric nitrogen and were producers of ammonia and siderophores. However, only one (2.22%) strain named Saccharothrix sp. BT79 could solubilize phosphorus and potassium. Overall, many strains exhibited a broad spectrum of PGP abilities. Thus, A. herba-alba provides a source of endophytic actinobacteria that should be explored for their potential biological activities.
Collapse
Affiliation(s)
- Nadjette Djemouai
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, BP 455, 47000, Ghardaïa, Algeria.
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria
| | - Khadidja Oulad Hadj Youcef
- Unité de Recherche Appliquée en Energies Renouvelables (URAER), Centre de Développement des Energies Renouvelables (CDER), Ghardaïa, Algeria
| | - Asma Nacer
- Equipe Biologie des Sols, Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El-Alia, Bab Ezzouar, BP32, 16111, Algiers, Algeria
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Sid Ahmed Saadi
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, B.P. 92, 16050, Kouba, Algiers, Algeria
| | | |
Collapse
|
2
|
Ezeobiora CE, Igbokwe NH, Amin DH, Enwuru NV, Okpalanwa CF, Mendie UE. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Antibiotic resistance is on the rise, and new antibiotic research has slowed in recent years, necessitating the discovery of possibly novel microbial resources capable of producing bioactive compounds. Microbial infections are gaining resistance to existing antibiotics, emphasizing the need for novel medicinal molecules to be discovered as soon as possible. Because the possibilities of isolating undiscovered actinomycetes strains have decreased, the quest for novel products has shifted to rare actinomycetes genera from regular environments or the identification of new species identified in unusual habitats.
Main body of the abstract
The non-streptomyces actinobacteria are known as rare actinomycetes that are extremely difficult to cultivate. Rare actinomycetes are known to produce a variety of secondary metabolites with varying medicinal value. In this review, we reported the diversity of rare actinomycetes in several habitat including soil, plants, aquatic environment, caves, insects and extreme environments. We also reported some isolation methods to easily recover rare Actinobacteria from various sources guided with some procedures to identify the rare Actinobacteria isolates. Finally, we reported the biosynthetic potential of rare actinomycetes and its role in the production of unique secondary metabolites that could be used in medicine, agriculture, and industry. These microbial resources will be of interest to humanity, as antibiotics, insecticides, anticancer, antioxidants, to mention but a few.
Short conclusion
Rare actinomycetes are increasingly being investigated for new medicinal compounds that could help to address existing human health challenges such as newly emerging infectious illnesses, antibiotic resistance, and metabolic disorders. The bioactive secondary metabolites from uncommon actinomycetes are the subject of this review, which focuses on their diversity in different habitats, isolation, identification and biosynthetic potentials.
Collapse
|
3
|
Riahi HS, Heidarieh P, Fatahi-Bafghi M. Genus Pseudonocardia: What we know about its biological properties, abilities and current application in biotechnology. J Appl Microbiol 2021; 132:890-906. [PMID: 34469043 DOI: 10.1111/jam.15271] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The genus Pseudonocardia belongs to a group of Actinomycetes, and is a member of the family Pseudonocardiacea. The members of this genus are aerobic, Gram-positive, non-motile bacteria that are commonly found in soil, plant and environment. Although this genus has a low clinical significance; however, it has an important role in biotechnology due to the production of secondary metabolites, some of which have anti-bacterial, anti-fungal and anti-tumour effects. The use of phenotypic tests, such as gelatinase activity, starch hydrolysis, catalase and oxidase tests, as well as molecular methods, such as polymerase chain reaction, are necessary for Pseudonocardia identification at the genus and species levels.
Collapse
Affiliation(s)
- Hanieh Sadat Riahi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parvin Heidarieh
- Department of Bacteriology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Song J, Qiu S, Zhao J, Han C, Wang Y, Sun X, Jiang S, Wang X, Xiang W. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2018; 112:765-773. [PMID: 30536164 DOI: 10.1007/s10482-018-01210-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
Abstract
An aerobic, non-motile, Gram-stain positive actinomycete, designated strain NEAU-YY211T, was isolated from the rhizosphere soil of wheat (Triticum aestivum L.) collected from Zhumadian, Henan Province, mid-eastern China, and characterised taxonomically using a polyphasic approach. Comparative analysis of the 16S rRNA gene sequence indicated that strain NEAU-YY211T belongs to the genus Pseudonocardia, showing high similarities with respect to Pseudonocardia ammonioxydans H9T (99.1%) and Pseudonocardia antitumoralis SCSIO 01299T (99.0%), respectively. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as arabinose and galactose. The predominant menaquinone of strain NEAU-YY211T was identified as MK-8(H4) and the major fatty acids were identified as iso-C16:0, C17:1ω8c and iso-C16:1. The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and an unidentified phospholipid. The G+C content of the genomic DNA was determined to be 72.6 mol%. Levels of DNA-DNA relatedness with P. ammonioxydans JCM 12462T and P. antitumoralis DSM 45322T were 54.5 ± 3.5% and 49.8 ± 2.5% (mean ± SD), respectively. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate can be distinguished from closely related type strains and thus represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia tritici sp. nov. is proposed. The type strain is NEAU-YY211T (= DSM 106068T = CGMCC 4.7474T).
Collapse
Affiliation(s)
- Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chuanyu Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Ying Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shanwen Jiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 2017; 64:261-270. [PMID: 28107573 DOI: 10.1111/lam.12718] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
The endophytic actinomycetes constitute one of the fascinating group of microorganisms associated with a wide range of plant species. The diversity of actinomycetes in plants and their tissue parts is a matter of debate as no consensus are derived between individual studies. Nevertheless, their diversity correlates with the occurrence in plant species harboured in unique regions of biologically diverse areas called "hot spots." Recent advances in the isolation techniques have facilitated the isolation of rare taxa from these environments. The biosynthetic ability of the endophytic actinomycetes has proven beyond doubt that these organisms have the potential to synthesize an array of compounds with novelty in structure and bioactivity and as a result are preferred in the natural product screening programs. In the years to come, the scientific world may await to discover many more novel actinomycete taxa with metabolic diversity and applications in therapeutics. SIGNIFICANCE AND IMPACT OF THE STUDY "Endophytes" - the microbes residing in the living tissues of plants are virtually omnipresent. Actinomycete endophytes are diverse in distribution within plant tissues, especially in the roots as they have a close association with the rhizhosphere. An introspection into diversity studies necessitates careful sampling, analysis, and isolation data from the biodiverse and nonbiodiverse regions represented by unique environments. The key to the recovery of novel species and their bioprospection lies in these regions.
Collapse
Affiliation(s)
- M S Nalini
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - H S Prakash
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| |
Collapse
|
6
|
Suriya J, Bharathiraja S, Manivasagan P, Kim SK. Enzymes From Rare Actinobacterial Strains. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:67-98. [PMID: 27770864 DOI: 10.1016/bs.afnr.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
7
|
Liu M, Xing SS, Yuan WD, Wei H, Sun QG, Lin XZ, Huang HQ, Bao SX. Pseudonocardia nematodicida sp. nov., isolated from mangrove sediment in Hainan, China. Antonie van Leeuwenhoek 2015; 108:571-7. [DOI: 10.1007/s10482-015-0512-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
8
|
Hamedi J, Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 2014; 42:157-71. [PMID: 25410828 DOI: 10.1007/s10295-014-1537-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.
Collapse
Affiliation(s)
- Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran,
| | | |
Collapse
|
9
|
Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D, Guven K, Klenk HP. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703-1711. [PMID: 24523445 DOI: 10.1099/ijs.0.059824-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic positions of four novel actinomycetes isolated from soil samples, designated KT2142T, PM2084T, K236T and A4038T, were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Pseudonocardia. Whole-cell hydrolysates of the four strains contained meso-diaminopimelic acid and arabinose and galactose as the diagnostic sugars (cell-wall type IV). Their predominant menaquinone was found to be MK-8(H4). The major fatty acid was iso-C16:0. 16S rRNA gene sequence data supported the classification of the isolates in the genus Pseudonocardia and showed that they formed four distinct branches within the genus. DNA-DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The four isolates were readily distinguished from one another and from the type strains of species classified in the genus Pseudonocardia based on a combination of phenotypic and genotypic properties. In conclusion, it is proposed that the four isolates be classified in four novel species of the genus Pseudonocardia, for which the names Pseudonocardia cypriaca sp. nov. (type strain KT2142T=KCTC 29067T=DSM 45511T=NRRL B-24882T), Pseudonocardia hierapolitana sp. nov. (type strain PM2084T=KCTC 29068T=DSM 45671T=NRRL B-24879T), Pseudonocardia salamisensis sp. nov. (type strain K236T=KCTC 29100T=DSM 45717T) and Pseudonocardia kujensis sp. nov. (type strain A4038T=KCTC 29062T=DSM 45670T=NRRL B-24890T) are proposed.
Collapse
Affiliation(s)
- Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Aysel Veyisoglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Canik Basari University, 55080 Samsun, Turkey.,Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Demet Tatar
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Demet Cetin
- Science Teaching Programme, Gazi Faculty of Education, Gazi University, Ankara, Turkey
| | - Kiymet Guven
- Anadolu University, Faculty of Science, Biology Department, 26470 Eskisehir, Turkey
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Zhang DF, Jiang Z, Li L, Liu BB, Zhang XM, Tian XP, Zhang S, Li WJ. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 64:745-750. [PMID: 24198055 DOI: 10.1099/ijs.0.057844-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic actinomycete, designated strain YIM M13141(T), was isolated from a marine sediment sample from the South China Sea, and its taxonomic position was determined using a polyphasic approach. The strain produced branched substrate mycelium and aerial hyphae, but no diffusible pigments were produced on the media tested. At maturity, substrate mycelium was fragmented and spore chains were formed on aerial hyphae and substrate mycelium. Optimum growth occurred at 28 °C, 1-3% (w/v) NaCl and pH 7.0. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Pseudonocardia, showing highest levels of similarity with respect to Pseudonocardia sichuanensis KLBMP 1115(T) (97.1%), Pseudonocardia tetrahydrofuranoxydans K1(T) (97.1%) and Pseudonocardia kunmingensis YIM 63158(T) (97.0%). Whole-organism hydrolysates of the strain contained meso-diaminopimelic acid and the sugars galactose, glucose, mannose and arabinose. The predominant menaquinone was MK-8(H4). The polar lipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylethanolamine, two unknown phosphoglycolipids and two glycolipids. The major fatty acid was iso-C16 : 0. The G+C content of the genomic DNA was 73.1 mol%. DNA-DNA relatedness with P. tetrahydrofuranoxydans DSM 44239(T) was 42.8 ± 3.5% (mean±sd). Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia sediminis sp. nov. is proposed. The type strain is YIM M13141(T) ( = DSM 45779(T) = JCM 18540(T)).
Collapse
Affiliation(s)
- Dao-Feng Zhang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China.,Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| | - Zhao Jiang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| | - Bing-Bing Liu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Mei Zhang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Xin-Peng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, CAS; RNAM Center for Marine Microbiology, CAS; Guangdong Key Laboratory of Marine Materia Medica; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, CAS; RNAM Center for Marine Microbiology, CAS; Guangdong Key Laboratory of Marine Materia Medica; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China.,Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| |
Collapse
|
12
|
Jose PA, Jebakumar SRD. Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front Microbiol 2013; 4:240. [PMID: 23970883 PMCID: PMC3747354 DOI: 10.3389/fmicb.2013.00240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 11/17/2022] Open
|
13
|
Abstract
A renewed interest in the development of new antimicrobial agents is urgently needed to combat the increasing number of antibiotic-resistant strains of pathogenic microorganisms. Actinomycetes continue to be the mainstream supplier of antibiotics used in industry. The likelihood of discovering a new compound with novel chemical structure can be increased with intensive efforts in isolating and screening of rare genera of microorganisms to include in natural-product-screening collections. An unexpected variety of rare actinomycetes is now being isolated worldwide from previously uninvestigated diverse natural habitats, using different selective isolation methods. These isolation efforts include methods to enhance growth (enrichment) of rare actinomycetes, and eliminate unwanted microorganisms (pretreatment). To speed up the strain isolation process, knowledge about the distribution of such unexploited groups of microorganisms must also be augmented. This is a summary of using these microorganisms as new potential biological resources, and a review of almost all of the selective isolation methods, including pretreatment and enrichment techniques that have been developed to date for the isolation of rare actinomycetes.
Collapse
Affiliation(s)
- Kavita Tiwari
- School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
| | | |
Collapse
|
14
|
Cuesta G, Soler A, Alonso JL, Ruvira MA, Lucena T, Arahal DR, Goodfellow M. Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek 2012; 103:135-42. [PMID: 22899021 DOI: 10.1007/s10482-012-9792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
A novel actinomycete, designated PA3(T), was isolated from an oil refinery wastewater treatment plant, located in Palos de la Frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM 44247(T). The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H(4)) as the predominant menaquinone and iso-C(16:0) as the major fatty acid, are consistent with its classification in the genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P. asaccharolytica DSM 44247(T) showed that they belonged to separate genomic species. The two strains were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed that isolate PA3(T) represents a novel species for which the name Pseudonocardia hispaniensis sp. nov. is proposed. The type strain is PA3(T) (= CCM 8391(T) = CECT 8030(T)).
Collapse
Affiliation(s)
- G Cuesta
- Área de Microbiología, Departamento de Biotecnología, E.T.S.I. Agronómica y Medio Natural, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pseudonocardia antimicrobica sp. nov., a novel endophytic actinomycete associated with Artemisia annua L. (sweet wormwood). J Antibiot (Tokyo) 2012; 65:469-72. [DOI: 10.1038/ja.2012.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Xing K, Qin S, Bian GK, Zhang YJ, Zhang WD, Dai CC, Liu CH, Li WJ, Jiang JH. Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour. Antonie van Leeuwenhoek 2012; 102:659-67. [DOI: 10.1007/s10482-012-9764-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 11/30/2022]
|
17
|
Zhao LX, Xu LH, Jiang CL. Methods for the study of endophytic microorganisms from traditional Chinese medicine plants. Methods Enzymol 2012; 517:3-21. [PMID: 23084931 DOI: 10.1016/b978-0-12-404634-4.00001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Plant endophytes are very numerous and widely distributed in nature, their relationships being described as a balanced symbiotic continuum ranging from mutualism through commensalism to parasitism during a long period of coevolution. Traditional Chinese medicines have played a very important role in disease treatment in China and other Asian countries. Investigations show that these medicinal plants harbor endophytes with different kinds of ecological functions, and some of them have potential to produce bioactive small-molecule compounds. This chapter will focus on the selective isolation methods, the diversity of some endophytes (actinobacteria and fungi) isolated from Traditional Chinese Medicine (TCM) plants, and the bioactive compounds from selected endophytic actinobacteria reported in the past 3 years.
Collapse
Affiliation(s)
- Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, China
| | | | | |
Collapse
|
18
|
Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie van Leeuwenhoek 2011; 101:515-27. [PMID: 22038129 DOI: 10.1007/s10482-011-9661-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
Endophytic actinobacteria isolated from Artemisia annua were characterized and evaluated for their bioactivities. A total of 228 isolates representing at least 19 different genera of actinobacteria were obtained and several of them seemed to be novel taxa. An evaluation of antimicrobial activity showed that more isolates possessed activity towards plant pathogens than activity against other pathogenic bacteria or yeasts. High frequencies of PCR amplification were obtained for type I polyketide synthases (PKS-I, 21.1%), type II polyketide synthases (PKS-II, 45.2%) and nonribosomal peptide synthetases (NRPS, 32.5%). The results of herbicidal activity screening indicated that 19 out of 117 samples of fermentation broths completely inhibited the germination of Echinochloa crusgalli. This study indicated that endophytic actinobacteria associated with A. annua are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pseudonocardia serianimatus sp. nov., a novel actinomycete isolated from the surface-sterilized leaves of Artemisia annua L. Antonie van Leeuwenhoek 2011; 100:521-8. [DOI: 10.1007/s10482-011-9607-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
|
20
|
Pseudonocardia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisia annua L. Antonie van Leeuwenhoek 2011; 100:35-42. [DOI: 10.1007/s10482-011-9562-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
21
|
Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 2010; 89:457-73. [DOI: 10.1007/s00253-010-2923-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 01/23/2023]
|