1
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
3
|
Tirumalai MR. Education and public outreach: communicating science through storytelling. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0020923. [PMID: 38661406 PMCID: PMC11044642 DOI: 10.1128/jmbe.00209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
Education and public outreach activities can be challenging for most active scientists, for very good reasons. Allotment of time to participate in outreach activities could be a major challenge. However, when such activities are incorporated into one's academic and research plan, they can be enriching. Here, the author describes his experience in what began as on one-off participation at an outreach event, leading to a series of speaking events addressing the public at the monthly meetings of several astronomy clubs/societies, observatories, etc. in the states of Texas, Louisiana, New Mexico, and Colorado. They have often involved the use of motifs and characters from popular science fiction, literature, and movies and when possible, getting the audience actively involved in the presentations. Furthermore, the discussions following each presentation have been enriching in terms of getting a broad perspective of the perceptions that people in general have, regarding the origins of life, microbiology, extremophiles, and astrobiology.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
5
|
Gheibzadeh MS, Manyumwa CV, Tastan Bishop Ö, Shahbani Zahiri H, Parkkila S, Zolfaghari Emameh R. Genome Study of α-, β-, and γ-Carbonic Anhydrases from the Thermophilic Microbiome of Marine Hydrothermal Vent Ecosystems. BIOLOGY 2023; 12:770. [PMID: 37372055 DOI: 10.3390/biology12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (β), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, β-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, β-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and β-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of β-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a β-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and β-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (Rubi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| |
Collapse
|
6
|
Wu M, Ma G, Lin Y, Oger P, Cao P, Zhang L. Biochemical Characterization and Mutational Studies of Endonuclease Q from the Hyperthermophilic Euryarchaeon Thermococcus gammatolerans. DNA Repair (Amst) 2023; 126:103490. [PMID: 37028219 DOI: 10.1016/j.dnarep.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Endonuclease Q (EndoQ) can effectively cleave DNA containing deaminated base(s), thus providing a potential pathway for repair of deaminated DNA. EndoQ is ubiquitous in some Archaea, especially in Thermococcales, and in a small group of bacteria. Herein, we report biochemical characteristics of EndoQ from the hyperthermophilic euryarchaeon Thermococcus gammatolerans (Tga-EndoQ) and the roles of its six conserved residues in DNA cleavage. The enzyme can cleave uracil-, hypoxanthine-, and AP (apurinic/apyrimidinic) site-containing DNA with varied efficiencies at high temperature, among which uracil-containing DNA is its most preferable substrate. Additionally, the enzyme displays maximum cleavage efficiency at above 70 oC and pH 7.0 ∼ 8.0. Furthermore, Tga-EndoQ still retains 85% activity after heated at 100 oC for 2 hrs, suggesting that the enzyme is extremely thermostable. Moreover, the Tga-EndoQ activity is independent of a divalent ion and NaCl. Mutational data demonstrate that residues E167 and H195 in Tga-EndoQ are essential for catalysis since the E167A and H195A mutants completely abolish the cleavage activity. Besides, residues S18 and R204 in Tga-EndoQ are involved in catalysis due to the reduced activities observed for the S18A and R204A mutants. Overall, our work has augmented biochemical function of archaeal EndoQ and provided insight into its catalytic mechanism.
Collapse
Affiliation(s)
- Mai Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Guangyu Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Yushan Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR, 5240 Lyon, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
7
|
Pible O, Petit P, Steinmetz G, Rivasseau C, Armengaud J. Taxonomical composition and functional analysis of biofilms sampled from a nuclear storage pool. Front Microbiol 2023; 14:1148976. [PMID: 37125163 PMCID: PMC10133526 DOI: 10.3389/fmicb.2023.1148976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Sampling small amounts of biofilm from harsh environments such as the biofilm present on the walls of a radioactive material storage pool offers few analytical options if taxonomic characterization and estimation of the different biomass contributions are the objectives. Although 16S/18S rRNA amplification on extracted DNA and sequencing is the most widely applied method, its reliability in terms of quantitation has been questioned as yields can be species-dependent. Here, we propose a tandem-mass spectrometry proteotyping approach consisting of acquiring peptide data and interpreting then against a generalist database without any a priori. The peptide sequence information is transformed into useful taxonomical information that allows to obtain the different biomass contributions at different taxonomical ranks. This new methodology is applied for the first time to analyze the composition of biofilms from minute quantities of material collected from a pool used to store radioactive sources in a nuclear facility. For these biofilms, we report the identification of three genera, namely Sphingomonas, Caulobacter, and Acidovorax, and their functional characterization by metaproteomics which shows that these organisms are metabolic active. Differential expression of Gene Ontology GOslim terms between the two main microorganisms highlights their metabolic specialization.
Collapse
Affiliation(s)
- Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Pauline Petit
- Université Grenoble Alpes, CEA, CNRS, IRIG, Grenoble, France
| | - Gérard Steinmetz
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Corinne Rivasseau
- Université Grenoble Alpes, CEA, CNRS, IRIG, Grenoble, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
- *Correspondence: Jean Armengaud,
| |
Collapse
|
8
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
9
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
10
|
Marín‐Tovar Y, Serrano‐Posada H, Díaz‐Vilchis A, Rudiño‐Piñera E. PCNA from
Thermococcus gammatolerans
: A protein involved in chromosomal
DNA
metabolism intrinsically resistant at high levels of ionizing radiation. Proteins 2022; 90:1684-1698. [DOI: 10.1002/prot.26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yerli Marín‐Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Hugo Serrano‐Posada
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ Universidad de Colima Colima Mexico
| | - Adelaida Díaz‐Vilchis
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Enrique Rudiño‐Piñera
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| |
Collapse
|
11
|
Zhang L, Lin T, Yin Y, Chen M. Biochemical and functional characterization of a thermostable RecJ exonuclease from Thermococcus gammatolerans. Int J Biol Macromol 2022; 204:617-626. [PMID: 35150781 DOI: 10.1016/j.ijbiomac.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
RecJ is ubiquitous in bacteria and Archaea, and play an important role in DNA replication and repair. Currently, our understanding on biochemical function of archaeal RecJ is incomplete due to the limited reports. The genome of the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes one putative RecJ protein (Tga-RecJ). Herein, we report biochemical characteristics and catalytic mechanism of Tga-RecJ. Tga-RecJ can degrade ssDNA in the 5'-3' direction at high temperature as observed in Thermococcus kodakarensis RecJ and Pyrococcus furiosus RecJ, the two closest homologs of the enzyme. In contrasted to P. furiosus RecJ, Tga-RecJ lacks 3'-5' ssRNA exonuclease activity. Furthermore, maximum activity of Tga-RecJ is observed at 50 °C ~ 70 °C and pH 7.0-9.0 with Mn2+, and the enzyme is the most thermostable among the reported RecJ proteins. Additionally, the rates for hydrolyzing ssDNA by Tga-RecJ were estimated by kinetic analyses at 50 °C ~ 70 °C, thus revealing its activation energy (10.5 ± 0.6 kcal/mol), which is the first report on energy barrier for ssDNA degradation by RecJ. Mutational studies showed that the mutations of residues D36, D83, D105, H106, H107 and D166 in Tga-RecJ to alanine almost completely abolish its activity, thereby suggesting that these residues are essential for catalysis.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| | - Tan Lin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
12
|
Lantin S, Mendell S, Akkad G, Cohen AN, Apicella X, McCoy E, Beltran-Pardo E, Waltemathe M, Srinivasan P, Joshi PM, Rothman JH, Lubin P. Interstellar space biology via Project Starlight. ACTA ASTRONAUTICA 2022; 190:261-272. [PMID: 36710946 PMCID: PMC9881496 DOI: 10.1016/j.actaastro.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Our ability to explore the cosmos by direct contact has been limited to a small number of lunar and interplanetary missions. However, the NASA Starlight program points a path forward to send small, relativistic spacecraft far outside our solar system via standoff directed-energy propulsion. These miniaturized spacecraft are capable of robotic exploration but can also transport seeds and organisms, marking a profound change in our ability to both characterize and expand the reach of known life. Here we explore the biological and technological challenges of interstellar space biology, focusing on radiation-tolerant microorganisms capable of cryptobiosis. Additionally, we discuss planetary protection concerns and other ethical considerations of sending life to the stars.
Collapse
Affiliation(s)
- Stephen Lantin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, 32611, FL, USA
- Department of Chemical Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Sophie Mendell
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- College of Creative Studies, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Ghassan Akkad
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Alexander N. Cohen
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Xander Apicella
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Emma McCoy
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | | | | | - Prasanna Srinivasan
- Department of Electrical and Computer Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- Center for BioEngineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Pradeep M. Joshi
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Philip Lubin
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| |
Collapse
|
13
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
14
|
Alain K, Vince E, Courtine D, Maignien L, Zeng X, Shao Z, Jebbar M. Thermococcus henrietii sp. nov., a novel extreme thermophilic and piezophilic sulfur-reducing archaeon isolated from a deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 2021; 71. [PMID: 34270399 DOI: 10.1099/ijsem.0.004895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel extreme thermophilic and piezophilic chemoorganoheterotrophic archaeon, strain EXT12cT, was isolated from a hydrothermal chimney sample collected at a depth of 2496 m at the East Pacific Rise 9° N. Cells were strictly anaerobic, motile cocci. The strain grew at NaCl concentrations ranging from 1 to 5 % (w/v; optimum, 2.0%), from pH 6.0 to 7.5 (optimum, pH 6.5-7.0), at temperatures between 60 and 95 °C (optimum, 80-85 °C), and at pressures from 0.1 to at least 50 MPa (optimum, 30 MPa). Strain EXT12cT grew chemoorganoheterotrophically on complex proteinaceous substrates. Its growth was highly stimulated by the presence of elemental sulphur or l-cystine, which were reduced to hydrogen sulfide. The DNA G+C content was 54.58 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain EXT12cT falls into the genus Thermococcus and is most closely related to Thermococcus nautili strain 30-1T. Overall genome relatedness index analyses (average nucleotide identity scores and in silico DNA-DNA hybridizations) showed a sufficient genomic distance between the new genome and the ones of the Thermococcus type strains for the delineation of a new species. On the basis of genotypic and phenotypic data, strain EXT12cT is considered to represent a novel species, for which the name Thermococcus henrietii sp. nov. is proposed, with the type strain EXT12cT (=UBOCC M-2417T=DSM 111004T).
Collapse
Affiliation(s)
- Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Erwann Vince
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Lois Maignien
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Xiang Zeng
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| |
Collapse
|
15
|
Courtine D, Vince E, Maignien L, Philippon X, Gayet N, Shao Z, Alain K. Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2021; 71. [PMID: 34236955 DOI: 10.1099/ijsem.0.004853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A coccoid-shaped, strictly anaerobic, hyperthermophilic and piezophilic organoheterotrophic archaeon, strain Iri35cT, was isolated from a hydrothermal chimney rock sample collected at a depth of 2300 m at the Mid-Atlantic Ridge (Rainbow vent field). Cells of strain Iri35cT grew at NaCl concentrations ranging from 1-5 % (w/v) (optimum 2.0 %), from pH 5.0 to 9.0 (optimum 7.0-7.5), at temperatures between 50 and 90 °C (optimum 75-80 °C) and at pressures from 0.1 to at least 50 MPa (optimum: 10-30 MPa). The novel isolate grew on complex organic substrates, such as yeast extract, tryptone, peptone or beef extract, preferentially in the presence of elemental sulphur or l-cystine; however, these molecules were not necessary for growth. Its genomic DNA G+C content was 54.63 mol%. The genome has been annotated and the metabolic predictions are in accordance with the metabolic characteristics of the strain and of Thermococcales in general. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain Iri35cT belongs to the genus Thermococcus, and is closer to the species T. celericrescens and T. siculi. Average nucleotide identity scores and in silico DNA-DNA hybridization values between the genome of strain Iri35cT and the genomes of the type species of the genus Thermococcus were below the species delineation threshold. Therefore, and considering the phenotypic data presented, strain Iri35cT is suggested to represent a novel species, for which the name Thermococcus camini sp. nov. is proposed, with the type strain Iri35cT (=UBOCC M-2026T=DSM 111003T).
Collapse
Affiliation(s)
- Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Erwann Vince
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Xavier Philippon
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | | | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| |
Collapse
|
16
|
Obulisamy PK, Mehariya S. Polyhydroxyalkanoates from extremophiles: A review. BIORESOURCE TECHNOLOGY 2021; 325:124653. [PMID: 33465644 DOI: 10.1016/j.biortech.2020.124653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are group monomers/heteropolymers that are biodegradable and widely used in biomedical applications. They are considered as alternatives to fossil derived polymers and accumulated by microbes including extremophilic archaea as energy storage inclusions under nutrient limitations. The use of extremophilic archaea for PHA production is an economically viable option for conventional aerobic processes, but less is known about their pathways and PHA accumulation capacities. This review summarized: (a) specific adaptive mechanisms towards extreme environments by extremophiles and specific role of PHAs; (b) understanding of PHA synthesis/metabolism in archaea and specific functional genes; (c) genetic engineering and process engineering approaches required for high-rate PHA production using extremophilic archaea. To conclude, the future studies are suggested to understand the membrane lipids and PHAs accumulation to explain the adaptation mechanism of extremophiles and exploiting it for commercial production of PHAs.
Collapse
Affiliation(s)
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Italy
| |
Collapse
|
17
|
Jiang D, Zhang L, Dong K, Gong Y, Oger P. Biochemical characterization and mutational studies of a novel 3-methlyadenine DNA glycosylase II from the hyperthermophilic Thermococcus gammatolerans. DNA Repair (Amst) 2020; 97:103030. [PMID: 33360524 DOI: 10.1016/j.dnarep.2020.103030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023]
Abstract
The hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes a putative 3-methlyadenine DNA glycosylase II (Tg-AlkA). Herein, we report biochemical characterization and catalytic mechanism of Tg-AlkA. The recombinant Tg-AlkA can excise hypoxanthine (Hx) and 1-methlyadenine (1-meA) from dsDNA with varied efficiencies at high temperature. Notably, Tg-AlkA is a bi-functional glycosylase, which is sharply distinct from all the reported AlkAs. Biochemical data show that the optimal temperature and pH of Tg-AlkA for removing Hx from dsDNA are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the Tg-AlkA activity is independent of a divalent metal ion, and Mg2+ stimulates the Tg-AlkA activity whereas other divalent ions inhibit the enzyme activity with varied degrees. Mutational studies show that the Tg-AlkA W204A and D223A mutants abolish completely the excision activity, thereby suggesting that residues W204 and D223 are involved in catalysis. Surprisingly, the mutations of W204, D223, Y139 and W256 to alanine in Tg-AlkA lead to the increased affinity for binding DNA substrate with varied degrees, suggesting that these residues are flexible for conformational change of the enzyme. Therefore, Tg-AlkA is a novel AlkA that can remove Hx and 1-meA from dsDNA, thus providing insights into repair of deaminated and alkylated bases in DNA from hyperthermophilic Thermococcus.
Collapse
Affiliation(s)
- Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Kunming Dong
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China.
| | - Philippe Oger
- Univ Lyon, INSA De Lyon, CNRS UMR 5240, Lyon, France.
| |
Collapse
|
18
|
Alpha-Bazin B, Gorlas A, Lagorce A, Joulié D, Boyer JB, Dutertre M, Gaillard JC, Lopes A, Zivanovic Y, Dedieu A, Confalonieri F, Armengaud J. Lysine-specific acetylated proteome from the archaeon Thermococcus gammatolerans reveals the presence of acetylated histones. J Proteomics 2020; 232:104044. [PMID: 33161166 DOI: 10.1016/j.jprot.2020.104044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022]
Abstract
Thermococcus gammatolerans EJ3 is an extremophile archaeon which was revealed as one of the most radioresistant organisms known on Earth, withstanding up to 30 kGy gamma-ray radiations. While its theoretical proteome is rather small, T. gammatolerans may enhance its toolbox by post-translational modification of its proteins. Here, we explored its extent of Nε-acetylation of lysines. For this, we immunopurified with two acetylated-lysine antibodies the acetylated peptides resulting from a proteolysis of soluble proteins with trypsin. The comparison of acetylated proteomes of two archaea highlights some common acetylation patterns but only 4 out of 26 orthologous proteins found to be acetylated in both species, are acetylated on the same lysine site. We evidenced that histone B is acetylated in T. gammatolerans at least at two different sites (K27 and K36), and a peptide common at the C-terminus of histones A and B is also acetylated. We verified that acetylation of histones is a common trait among Thermococcales after recording data on Thermococcus kodakaraensis histones and identifying three acetylated sites. This discovery reinforces the strong evolutionary link between Archaea and Eukaryotes and should be an incentive for further investigation on the extent and role of acetylation of histones in Archaea. SIGNIFICANCE: Acetylation is an important post-translational modification of proteins that has been extensively described in Eukaryotes, and more recently in Bacteria. Here, we report for the first time ever that histones in Archaea are also modified by acetylation after a systematic survey of acetylated peptides in Thermococcus gammatolerans. Structural models of histones A and B indicates that acetylation of the identified modified residues may play an important role in histone assembly and/or interaction with DNA. The in-depth protein acetylome landscape in T. gammatolerans includes at least 181 unique protein sequences, some of them being modified on numerous residues. Proteins involved in metabolic processes, information storage and processing mechanisms are over-represented categories in this dataset, highlighting the ancient role of this protein post-translational modification in primitive cells.
Collapse
Affiliation(s)
- Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Arnaud Lagorce
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, Perpignan, France
| | - Damien Joulié
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Murielle Dutertre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yvan Zivanovic
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alain Dedieu
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France.
| |
Collapse
|
19
|
Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020; 10:life10110264. [PMID: 33143156 PMCID: PMC7693761 DOI: 10.3390/life10110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Collapse
|
20
|
Zhang L, Jiang D, Shi H, Wu M, Gan Q, Yang Z, Oger P. Characterization and application of a family B DNA polymerase from the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans. Int J Biol Macromol 2020; 156:217-224. [PMID: 32229210 DOI: 10.1016/j.ijbiomac.2020.03.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Thermococcus gammatolerans is anaerobic euryarchaeon which grows optimally at 88 °C and its genome encodes a family B DNA polymerase (Tga PolB). Herein, we cloned the gene of Tga PolB, expressed and purified the gene product, and characterized the enzyme biochemically. The recombinant Tga PolB can efficiently synthesize DNA at high temperature, and retain 93% activity after heated at 95 °C for 1.0 h, suggesting that the enzyme is thermostable. Furthermore, the optimal pH for the enzyme activity was measured to be 7.0-9.0. Tga PolB activity is dependent on a divalent cation, among which magnesium ion is optimal. NaCl at low concentration stimulates the enzyme activity but at high concentration inhibits enzyme activity. Interestingly, Tga PolB is able to efficiently bypass uracil in DNA, which is distinct from other archaeal family B DNA pols. By contrast, Tga PolB is halted by an AP site in DNA, as observed in other archaeal family B DNA polymerases. Furthermore, Tga PolB extends the mismatched ends with reduced efficiencies. The enzyme possesses 3'-5' exonuclease activity and this activity is inhibited by dNTPs. The DNA binding assays showed that Tga PolB can efficiently bind to ssDNA and primed DNA, and have a marked preference for primed DNA. Last, Tga PolB can be used in routine PCR.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China; Guangling College, Yangzhou University, China.
| | - Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Haoqiang Shi
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Mai Wu
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Qi Gan
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| |
Collapse
|
21
|
Blank PN, Barnett AA, Ronnebaum TA, Alderfer KE, Gillott BN, Christianson DW, Himmelberger JA. Structural studies of geranylgeranylglyceryl phosphate synthase, a prenyltransferase found in thermophilic Euryarchaeota. Acta Crystallogr D Struct Biol 2020; 76:542-557. [PMID: 32496216 PMCID: PMC7271946 DOI: 10.1107/s2059798320004878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Archaea are uniquely adapted to thrive in harsh environments, and one of these adaptations involves the archaeal membrane lipids, which are characterized by their isoprenoid alkyl chains connected via ether linkages to glycerol 1-phosphate. The membrane lipids of the thermophilic and acidophilic euryarchaeota Thermoplasma volcanium are exclusively glycerol dibiphytanyl glycerol tetraethers. The first committed step in the biosynthetic pathway of these archaeal lipids is the formation of the ether linkage between glycerol 1-phosphate and geranylgeranyl diphosphate, and is catalyzed by the enzyme geranylgeranylglyceryl phosphate synthase (GGGPS). The 1.72 Å resolution crystal structure of GGGPS from T. volcanium (TvGGGPS) in complex with glycerol and sulfate is reported here. The crystal structure reveals TvGGGPS to be a dimer, which is consistent with the absence of the aromatic anchor residue in helix α5a that is required for hexamerization in other GGGPS homologs; the hexameric quaternary structure in GGGPS is thought to provide thermostability. A phylogenetic analysis of the Euryarchaeota and a parallel ancestral state reconstruction investigated the relationship between optimal growth temperature and the ancestral sequences. The presence of an aromatic anchor residue is not explained by temperature as an ecological parameter. An examination of the active site of the TvGGGPS dimer revealed that it may be able to accommodate longer isoprenoid substrates, supporting an alternative pathway of isoprenoid membrane-lipid synthesis.
Collapse
Affiliation(s)
- P. N. Blank
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - A. A. Barnett
- Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - T. A. Ronnebaum
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - K. E. Alderfer
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - B. N. Gillott
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| | - D. W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - J. A. Himmelberger
- Department of Chemistry and Physics, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, USA
| |
Collapse
|
22
|
Eckl DB, Huber H, Bäumler W. First Report on Photodynamic Inactivation of Archaea Including a Novel Method for High-Throughput Reduction Measurement. Photochem Photobiol 2020; 96:883-889. [PMID: 32073658 DOI: 10.1111/php.13229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Archaea are considered third, independent domain of living organisms besides eukaryotic and bacterial cells. To date, no report is available of photodynamic inactivation (PDI) of any archaeal cells. Two commercially available photosensitizers (SAPYR and TMPyP) were used to investigate photodynamic inactivation of Halobacterium salinarum. In addition, a novel high-throughput method was tested to evaluate microbial reduction in vitro. Due to the high salt content of the culture medium, the physical and chemical properties of photosensitizers were analyzed via spectroscopy and fluorescence-based DPBF assays. Attachment or uptake of photosensitizers to or in archaeal cells was investigated. The photodynamic inactivation of Halobacterium salinarum was evaluated via growth curve method allowing a high throughput of samples. The presented results indicate that the photodynamic mechanisms are working even in high salt environments. Either photosensitizer inactivated the archaeal cells with a reduction of 99.9% at least. The growth curves provided a fast and precise measurement of cell viability. The results show for the first time that PDI can kill not only bacterial cells but also robust archaea. The novel method for generating high-throughput growth curves provides benefits for future research regarding antimicrobial substances in general.
Collapse
Affiliation(s)
- Daniel B Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Harald Huber
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Bäumler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Eichler J. Modifying Post‐Translational Modifications: A Strategy Used by Archaea for Adapting to Changing Environments? Bioessays 2020; 42:e1900207. [DOI: 10.1002/bies.201900207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life SciencesBen Gurion University of the Negev Beersheva 84105 Israel
| |
Collapse
|
24
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Pillot G, Davidson S, Auria R, Combet-Blanc Y, Godfroy A, Liebgott PP. Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney. MICROBIAL ECOLOGY 2020; 79:38-49. [PMID: 31079197 DOI: 10.1007/s00248-019-01381-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m-2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions. Graphical Abstract Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Sylvain Davidson
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Richard Auria
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Yannick Combet-Blanc
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Anne Godfroy
- IFREMER, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Université de Bretagne Occidentale, Centre de Brest, CS10070, Plouzané, France
| | - Pierre-Pol Liebgott
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France.
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France.
- Campus de Luminy, Bâtiment OCEANOMED, Mediterranean Institute of Oceanography, 13288, Marseille Cedex 09, France.
| |
Collapse
|
26
|
Shifts in microbial community composition in tannery-contaminated soil in response to increased gamma radiation. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Purpose
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery.
Methods
Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis.
Result
Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities.
Conclusion
This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.
Collapse
|
27
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
28
|
Zhang L, Shi H, Gan Q, Wang Y, Wu M, Yang Z, Oger P, Zheng J. An alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease. DNA Repair (Amst) 2019; 85:102734. [PMID: 31704332 DOI: 10.1016/j.dnarep.2019.102734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023]
Abstract
Recent studies show that NucS endonucleases participate in mismatch repair in several archaea and bacteria. However, the function of archaeal NucS endonucleases has not been completely clarified. Here, we describe a NucS endonuclease from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans (Tga NucS) that can cleave uracil (U)- and hypoxanthine (I)-containing dsDNA at 80 °C. Biochemical evidence shows that the cleavage sites of the enzyme are at the second phosphodiester on the 5'- site of U or I, and at the third phosphodiester on the 5'-site of the opposite base of U or I, creating a double strand break with a 4-nt 5'-overhang.The ends of the cleaved product of Tga NucS are ligatable, possessing 5'-phosphate and 3'-hydroxyl termini, which can be utilized by DNA repair proteins or enzymes. Tga NucS displays a preference for U/G- and I/T-containing dsDNA over other pairs with U or I, suggesting that the enzyme is responsible for repair of U and I in DNA that arise from deamination. Biochemical characterization of cleaving U- and I-containing DNA by Tga NucS was also investigated. The DNA-binding results show that the enzyme exhibits a higher affinity for normal, U- and I-containing dsDNA than for normal, U- and I-containing ssDNA. Therefore, we present an alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Haoqiang Shi
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Qi Gan
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Yuxiao Wang
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Mai Wu
- Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Zhang L, Li Y, Shi H, Zhang D, Yang Z, Oger P, Zheng J. Biochemical characterization and mutational studies of the 8-oxoguanine DNA glycosylase from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans. Appl Microbiol Biotechnol 2019; 103:8021-8033. [PMID: 31372707 DOI: 10.1007/s00253-019-10031-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
8-oxoguanine (GO) is a major lesion found in DNA that arises from guanine oxidation. The hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes an archaeal GO DNA glycosylase (Tg-AGOG). Here, we characterized biochemically Tg-AGOG and probed its GO removal mechanism by mutational studies. Tg-AGOG can remove GO from DNA at high temperature through a β-elimination reaction. The enzyme displays an optimal temperature, ca.85-95 °C, and an optimal pH, ca.7.0-8.5. In addition, Tg-AGOG activity is independent on a divalent metal ion. However, both Co2+ and Cu2+ inhibit its activity. The enzyme activity is also inhibited by NaCl. Furthermore, Tg-AGOG specifically cleaves GO-containing dsDNA in the order: GO:C, GO:T, GO:A, and GO:G. Moreover, the temperature dependence of cleavage rates of the enzyme was determined, and from this, the activation energy for GO removal from DNA was first estimated to be 16.9 ± 0.9 kcal/mol. In comparison with the wild-type Tg-AGOG, the R197A mutant has a reduced cleavage activity for GO-containing DNA, whereas both the P193A and F167A mutants exhibit similar cleavage activities for GO-containing DNA. While the mutations of P193 and F167 to Ala lead to increased binding, the mutation of R197 to Ala had no significant effect on binding. These observations suggest that residue R197 is involved in catalysis, and residues P193 and F167 are flexible for conformational change.
Collapse
Affiliation(s)
- Likui Zhang
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuting Li
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haoqiang Shi
- Department of Environmental Science and Engineering Marine Science & Technology Institute, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dai Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, 071001, Hebei Province, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding City, 071001, Hebei Province, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Peeß C, Scholz C, Casagolda D, Düfel H, Gerg M, Kowalewsky F, Bocola M, von Proff L, Goller S, Klöppel-Swarlik H, Hoppe A, Schräml M. A novel epitope-presenting thermostable scaffold for the development of highly specific insulin-like growth factor-1/2 antibodies. J Biol Chem 2019; 294:13434-13444. [PMID: 31337703 PMCID: PMC6737233 DOI: 10.1074/jbc.ra119.007654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
High sequence and structural homology between mature human insulin-like growth factors IGF-1 and IGF-2 makes serological discrimination by immunodiagnostic IGF tests a challenging task. There is an urgent need for highly specific IGF-1 and IGF-2 antibodies, yet only a short sequence element, i.e. the IGF loop, provides enough difference in sequence to discriminate between the two molecules. We sought to address this unmet demand by investigating novel chimeric immunogens as carriers for recombinant peptide motif grafting. We found Thermus thermophilus sensitive to lysis D (SlyD) and Thermococcus gammatolerans SlyD FK-506–binding protein (FKBP) domains suitable for presentation of the predefined epitopes, namely the IGF-1 and IGF-2 loops. Chimeric SlyD-IGF proteins allowed for the development of exceptionally specific IGF-1 and IGF-2 monoclonal antibodies. The selected antibodies bound with high affinity to the distinct IGF epitopes displayed on the protein scaffolds, as well as on the mature human IGF isoforms. The respective SlyD scaffolds display favorable engineering properties in that they are small, monomeric, and cysteine-free and can be produced in high yields in a prokaryotic host, such as Escherichia coli. In conclusion, FKBP domains from thermostable SlyD proteins are highly suitable as a generic scaffold platform for epitope grafting.
Collapse
Affiliation(s)
- Carmen Peeß
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | - David Casagolda
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Hartmut Düfel
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Gerg
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Frank Kowalewsky
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | - Leopold von Proff
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Sabine Goller
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Heidi Klöppel-Swarlik
- Endocrinological Diseases III, Centralized and Point of Care, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Alessandra Hoppe
- Endocrinological Diseases III, Centralized and Point of Care, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Schräml
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany.
| |
Collapse
|
31
|
Variation of Microbial Communities in Aquatic Sediments under Long-Term Exposure to Decabromodiphenyl Ether and UVA Irradiation. SUSTAINABILITY 2019. [DOI: 10.3390/su11143773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abiotic components create different types of environmental stress on bacterial communities in aquatic ecosystems. In this study, the long-term exposure to various abiotic factors, namely a high-dose of the toxic chemical decabromodiphenyl ether (BDE-209), continuous UVA irradiation, and different types of sediment, were evaluated in order to assess their influence on the bacterial community. The dominant bacterial community in a single stress situation, i.e., exposure to BDE-209 include members of Comamonadaceae, members of Xanthomonadaceae, a Pseudomonas sp. and a Hydrogenophaga sp. Such bacteria are capable of biodegrading polybrominated diphenyl ethers (PBDEs). When multiple environmental stresses were present, Acidobacteria bacterium and a Terrimonas sp. were predominant, which equipped the population with multiple physiological characteristics that made it capable of both PBDE biodegradation and resistance to UVA irradiation. Methloversatilis sp. and Flavisolibacter sp. were identified as representative genera in this population that were radioresistant. In addition to the above, sediment heterogeneity is also able to alter bacterial community diversity. In total, seventeen species of bacteria were identified in the microcosms containing more clay particles and higher levels of soil organic matter (SOM). This means that these communities are more diverse than in microcosms that contained more sand particles and a lower SOM, which were found to have only twelve identifiable bacterial species. This is the first report to evaluate how changes in bacterial communities in aquatic sediment are affected by the presence of multiple variable environmental factors at the same time.
Collapse
|
32
|
Changes in soil taxonomic and functional diversity resulting from gamma irradiation. Sci Rep 2019; 9:7894. [PMID: 31133738 PMCID: PMC6536540 DOI: 10.1038/s41598-019-44441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known of the effects of ionizing radiation exposure on soil biota. We exposed soil microcosms to weekly bursts of 60Co gamma radiation over six weeks, at three levels of exposure (0.1 kGy/hr/wk [low], 1 kGy/hr/wk [medium] and 3 kGy/hr/wk [high]). Soil DNA was extracted, and shotgun metagenomes were sequenced and characterised using MG-RAST. We hypothesized that with increasing radiation exposure there would be a decrease in both taxonomic and functional diversity. While bacterial diversity decreased, diversity of fungi and algae unexpectedly increased, perhaps because of release from competition. Despite the decrease in diversity of bacteria and of biota overall, functional gene diversity of algae, bacteria, fungi and total biota increased. Cycles of radiation exposure may increase the range of gene functional strategies viable in soil, a novel ecological example of the effects of stressors or disturbance events promoting some aspects of diversity. Moreover, repeated density-independent population crashes followed by population expansion may allow lottery effects, promoting coexistence. Radiation exposure produced large overall changes in community composition. Our study suggests several potential novel radiation-tolerant groups: in addition to Deinococcus-Thermus, which reached up to 20% relative abundance in the metagenome, the phyla Chloroflexi (bacteria), Chytridiomycota (fungi) and Nanoarcheota (archaea) may be considered as radiation-tolerant.
Collapse
|
33
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
34
|
Shuryak I. Review of microbial resistance to chronic ionizing radiation exposure under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:50-63. [PMID: 30388428 DOI: 10.1016/j.jenvrad.2018.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and β, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, 630 West 168(th) street, VC-11-234/5, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Beblo-Vranesevic K, Bohmeier M, Perras AK, Schwendner P, Rabbow E, Moissl-Eichinger C, Cockell CS, Vannier P, Marteinsson VT, Monaghan EP, Ehrenfreund P, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Gaboyer F, Westall F, Cabezas P, Walter N, Rettberg P. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions. FEMS Microbiol Lett 2018; 365:4883205. [PMID: 29474542 PMCID: PMC5939664 DOI: 10.1093/femsle/fny044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes.
Collapse
Affiliation(s)
- Kristina Beblo-Vranesevic
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Maria Bohmeier
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Alexandra K Perras
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- Department of Microbiology and Archaea, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | - Elke Rabbow
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Charles S Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | | | - Viggo T Marteinsson
- MATISProkaria, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavík, Iceland
| | - Euan P Monaghan
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
| | - Pascale Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
- Space Policy Institute, George Washington University, 1957 E Street, 20052 Washington DC, USA
| | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Felipe Gómez
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Moustafa Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Frédéric Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Patricia Cabezas
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Nicolas Walter
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
36
|
Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 2018; 22:335-346. [DOI: 10.1007/s00792-018-1009-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
37
|
|
38
|
Cheptsov VS, Vorobyova EA, Manucharova NA, Gorlenko MV, Pavlov AK, Vdovina MA, Lomasov VN, Bulat SA. 100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions. Extremophiles 2017; 21:1057-1067. [DOI: 10.1007/s00792-017-0966-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022]
|
39
|
Cloning, recombinant production and crystallographic structure of Proliferating Cell Nuclear Antigen from radioresistant archaeon Thermococcus gammatolerans. Biochem Biophys Rep 2017; 8:200-206. [PMID: 28955957 PMCID: PMC5613700 DOI: 10.1016/j.bbrep.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022] Open
Abstract
Thermococcus gammatolerans is a strictly anaerobic; hyperthermophilicarchaeon belongs to the order Thermococcales in the phylum Euryarchaeota. It was extracted from a hydrothermal vent from the Guaymas Basin (Gulf of California, Mexico). Different studies show that T. gammatolerans is one of the most radioresistant organisms known amongst the archaea. This makes it a unique model to study adaptations to the environment and to study DNA repair mechanisms in an organism able to tolerate harsh conditions. A key protein in these mechanisms is the Proliferation Cell Nuclear Antigen (PCNA). Its function is focused on their ability to slide along the DNA duplex and coordinating the activities of proteins mainly related to DNA edition and processing. Analysis of archaeal proteins have proven to be enormously fruitful because much of the information obtained from them can be extrapolated to eukaryotic systems, and PCNA is no exception. Here we report the cloning, recombinant expression and crystallographic structure of PCNA from T. gammatolerans (TgPCNA). Amino acid sequence of TgPCNA depicts several residues and motifs well conserved. Asp41 appears to stimulate archaeal family B polymerases and FEN1 in homologous PCNA. By gel filtration the molecular mass was 52 kDa, closer to the monomeric state. The TgPCNA crystal belonged to the P3 space group. A total of 47 457 reflections were integrated to a resolution of 2.8 Å.
Collapse
|
40
|
Jung KW, Lim S, Bahn YS. Microbial radiation-resistance mechanisms. J Microbiol 2017; 55:499-507. [PMID: 28664512 DOI: 10.1007/s12275-017-7242-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Indexed: 11/28/2022]
Abstract
Organisms living in extreme environments have evolved a wide range of survival strategies by changing biochemical and physiological features depending on their biological niches. Interestingly, organisms exhibiting high radiation resistance have been discovered in the three domains of life (Bacteria, Archaea, and Eukarya), even though a naturally radiationintensive environment has not been found. To counteract the deleterious effects caused by radiation exposure, radiation- resistant organisms employ a series of defensive systems, such as changes in intracellular cation concentration, excellent DNA repair systems, and efficient enzymatic and non-enzymatic antioxidant systems. Here, we overview past and recent findings about radiation-resistance mechanisms in the three domains of life for potential usage of such radiationresistant microbes in the biotechnology industry.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
41
|
Ranawat P, Rawat S. Radiation resistance in thermophiles: mechanisms and applications. World J Microbiol Biotechnol 2017; 33:112. [DOI: 10.1007/s11274-017-2279-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
42
|
Medvedev KE, Kolchanov NA, Afonnikov DA. Identification of residues of the archaeal RNA-binding Nip7 proteins specific to environmental conditions. J Bioinform Comput Biol 2017; 15:1650036. [DOI: 10.1142/s0219720016500360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The understanding of biological and molecular mechanisms providing survival of cells under extreme temperatures and pressures will help to answer fundamental questions related to the origin of life and to design of biotechnologically important enzymes with new properties. Here, we analyze amino acid sequences of the Nip7 proteins from 35 archaeal species to identify positions containing mutations specific to the hydrostatic pressure and temperature of organism’s habitat. The number of such positions related to pressure change is much lower than related to temperature change. The results suggest that adaptation to temperature changes of the Nip7 protein cause more pronounced modifications in sequence and structure, than to the pressure changes. Structural analysis of residues at these positions demonstrated their involvement in salt-bridge formation, which may reflect the importance of protein structure stabilization by salt-bridges at extreme environmental conditions.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of Biophysics, University of Texas Southwestern, Medical Center, Dallas, Texas 75390, USA
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl., 1, Moscow 123182, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
43
|
Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria. Genetics 2017; 205:1677-1689. [PMID: 28188144 PMCID: PMC5378121 DOI: 10.1534/genetics.116.196154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 01/27/2023] Open
Abstract
A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria.
Collapse
|
44
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
45
|
Barbier E, Lagorce A, Hachemi A, Dutertre M, Gorlas A, Morand L, Saint-Pierre C, Ravanat JL, Douki T, Armengaud J, Gasparutto D, Confalonieri F, Breton J. Oxidative DNA Damage and Repair in the Radioresistant Archaeon Thermococcus gammatolerans. Chem Res Toxicol 2016; 29:1796-1809. [PMID: 27676238 DOI: 10.1021/acs.chemrestox.6b00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a β-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.
Collapse
Affiliation(s)
- Ewa Barbier
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Arnaud Lagorce
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France.,University of Perpignan, IHPE - UMR 5244 CNRS/IFREMER/Univ. Montpellier, Montpellier, F-34095, France
| | - Amine Hachemi
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Aurore Gorlas
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Lucie Morand
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Christine Saint-Pierre
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Thierry Douki
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean Armengaud
- CEA, DSV-Li2D, Laboratory "Innovative Technologies for Detection and Diagnostics", BP 17171, Bagnols-sur-Cèze, F-30207, France
| | - Didier Gasparutto
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Fabrice Confalonieri
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Jean Breton
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| |
Collapse
|
46
|
Moissl-Eichinger C, Cockell C, Rettberg P. Venturing into new realms? Microorganisms in space. FEMS Microbiol Rev 2016; 40:722-37. [PMID: 27354346 DOI: 10.1093/femsre/fuw015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board.
Collapse
Affiliation(s)
- Christine Moissl-Eichinger
- Department for Internal Medicine, Medical University of Graz, 8036 Graz, Austria BioTechMed Graz, 8010 Graz, Austria
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH10 4EP, UK
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
47
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
48
|
Sakai HD, Kurosawa N. Exploration and isolation of novel thermophiles in frozen enrichment cultures derived from a terrestrial acidic hot spring. Extremophiles 2016; 20:207-14. [PMID: 26860120 DOI: 10.1007/s00792-016-0815-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022]
Abstract
An isolation strategy, exploring novel microorganisms in frozen enrichment cultures (ENFE), which uses a combination of enrichment culture and 16S rRNA gene clone analysis, was evaluated for isolating uncultured thermophiles from a terrestrial acidic hot spring. The procedure comprised (a) multiple enrichment cultures under various conditions, (b) cryostorage of all enrichments, (c) microbial community analyses of the enrichments using 16S rRNA gene sequences, and (d) purification of microorganisms from enrichments containing previously uncultured microorganisms. The enrichments were performed under a total of 36 conditions, and 16 of these enrichments yielded positive microbial growth with the detection of three previously uncultured archaea. Two of the three previously uncultured archaea, strains HS-1 and HS-3, were successfully isolated. Strain HS-1 and HS-3 represented a novel lineage of the order Sulfolobales and novel species of the genus Sulfolobus, respectively. Although innovative isolation methods play strategic roles in isolating previously uncultured microorganisms, the ENFE strategy showed potential for characterizing and isolating such microorganisms using conventional media and techniques.
Collapse
Affiliation(s)
- Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
49
|
Christie-Oleza JA, Armengaud J. Proteomics of theRoseobacterclade, a window to the marine microbiology landscape. Proteomics 2015; 15:3928-42. [DOI: 10.1002/pmic.201500222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jean Armengaud
- CEA; DSV; IBiTec-S; SPI; Li2D; Laboratory “Innovative Technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| |
Collapse
|
50
|
Unraveling the mechanisms of extreme radioresistance in prokaryotes: Lessons from nature. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:92-107. [PMID: 27036069 DOI: 10.1016/j.mrrev.2015.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
The last 50 years, a variety of archaea and bacteria able to withstand extremely high doses of ionizing radiation, have been discovered. Several lines of evidence suggest a variety of mechanisms explaining the extreme radioresistance of microorganisms found usually in isolated environments on Earth. These findings are discussed thoroughly in this study. Although none of the strategies discussed here, appear to be universal against ionizing radiation, a general trend was found. There are two cellular mechanisms by which radioresistance is achieved: (a) protection of the proteome and DNA from damage induced by ionizing radiation and (b) recruitment of advanced and highly sophisticated DNA repair mechanisms, in order to reconstruct a fully functional genome. In this review, we critically discuss various protecting (antioxidant enzymes, presence or absence of certain elements, high metal ion or salt concentration etc.) and repair (Homologous Recombination, Single-Strand Annealing, Extended Synthesis-Dependent Strand Annealing) mechanisms that have been proposed to account for the extraordinary abilities of radioresistant organisms and the homologous radioresistance signature genes in these organisms. In addition, and based on structural comparative analysis of major radioresistant organisms, we suggest future directions and how humans could innately improve their resistance to radiation-induced toxicity, based on this knowledge.
Collapse
|