1
|
Liu C, Wang L, Chen X, Li J, Wang X, Chu Y. Pseudonocardia lacus sp. nov., An Actinomycete Isolated from a Lake Sediment Sample. Curr Microbiol 2023; 81:7. [PMID: 37962701 DOI: 10.1007/s00284-023-03520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
A novel actinomycete strain, designated H11425T, was isolated from a sediment sample collected from Baihua Lake, Guizhou Province, PR China, and a polyphasic approach was employed to determine its taxonomic position. 16S rRNA gene sequence comparisons showed that strain H11425T is most closely related to Pseudonocardia sulfidoxydans JCM 10411T (97.9%) and Pseudonocardia kunmingensis JCM 32122T (97.8%). Both of phylogenetic analysis based on 16S rRNA gene sequence and phylogenomic analysis based on whole-genome sequence showed that strain H11425T formed a separate clade within the genus Pseudonocardia. The draft genome had a length of 8,059,576 bp with a G + C content of 74.5%. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H11425T and its closely related Pseudonocardia species were 76.8-79.0%, 64.8-69.9% and 21.7-23.3%, respectively, which were significantly lower than the widely accepted species-defined threshold. Strain H11425T contained meso-diaminopimelic acid, arabinose, galactose, glucose and ribose in its whole-cell hydrolysates. Mycolic acids were absent. The menaquinone was identifed as MK-8(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylcholine, an unknown phospholipid and four unidentified aminophospholipids. The major fatty acids were iso-C16:0, iso-C14:0, iso H-C16:1 and iso-C16:0 2OH. On the basis of the taxonomic evidence, strain H11425T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia lacus sp. nov. is proposed. The type strain is H11425T (= JCM 34851T = CICC 25118T).
Collapse
Affiliation(s)
- Chaolan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Limei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xue Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jianghua Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Xingrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China.
| |
Collapse
|
2
|
Zan ZY, Ge XF, Huang RR, Liu WZ. Pseudonocardia humida sp. nov., an Actinomycete Isolated from Mangrove Soil Showing Distinct Distribution Pattern of Biosynthetic Gene Clusters. Curr Microbiol 2022; 79:87. [PMID: 35129703 DOI: 10.1007/s00284-022-02784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
A novel actinomycete strain, designated S2-4T, was isolated from a mangrove soil sample, and a polyphasic approach was employed to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene indicated that strain S2-4T formed a unique clade next to that harboring Pseudonocardia dioxanivorans CB1190T, which shared the highest sequence similarity (98.20%) with the new isolate. Phylogenetic analysis based on core genes of genomic sequences displayed a different scenario, exhibiting closer phylogenetic relationship of strain S2-4T with several species with 16S rRNA gene sequence similarities ranging from 96.95 to 98.06%, which was confirmed by the phylogenetic tree reconstructed based on genomic sequences. Further, substantial differences between the genotypic properties of strain S2-4T and its closest neighbors, including digital DNA-DNA hybridization, average nucleotide identity, and distribution patterns of biosynthetic gene clusters (BGC), indicated the taxonomic position of strain S2-4T as a novel species of the genus Pseudonocardia. Accordingly, strain S2-4T was observed to show a different distribution pattern of a predicted BGC encoding ectoine by comparative genomic analysis, which could be strongly linked to its unique habitat distinct from where its close neighbors were isolated. The major cellular fatty acids were iso-C15:0, C21:0, and iso-C16:0. The predominant menaquinone was MK-8(H4). The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidyl-N-monomethylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides, and two unidentified glycolipids. Here, we propose a novel species of the genus Pseudonocardia: Pseudonocardia humida sp. nov. with the type strain S2-4T (= JCM 34291T = CGMCC 4.7706T).
Collapse
Affiliation(s)
- Zhen-Yu Zan
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
3
|
Riahi HS, Heidarieh P, Fatahi-Bafghi M. Genus Pseudonocardia: What we know about its biological properties, abilities and current application in biotechnology. J Appl Microbiol 2021; 132:890-906. [PMID: 34469043 DOI: 10.1111/jam.15271] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The genus Pseudonocardia belongs to a group of Actinomycetes, and is a member of the family Pseudonocardiacea. The members of this genus are aerobic, Gram-positive, non-motile bacteria that are commonly found in soil, plant and environment. Although this genus has a low clinical significance; however, it has an important role in biotechnology due to the production of secondary metabolites, some of which have anti-bacterial, anti-fungal and anti-tumour effects. The use of phenotypic tests, such as gelatinase activity, starch hydrolysis, catalase and oxidase tests, as well as molecular methods, such as polymerase chain reaction, are necessary for Pseudonocardia identification at the genus and species levels.
Collapse
Affiliation(s)
- Hanieh Sadat Riahi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parvin Heidarieh
- Department of Bacteriology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Song J, Qiu S, Zhao J, Han C, Wang Y, Sun X, Jiang S, Wang X, Xiang W. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2018; 112:765-773. [PMID: 30536164 DOI: 10.1007/s10482-018-01210-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/01/2018] [Indexed: 11/29/2022]
Abstract
An aerobic, non-motile, Gram-stain positive actinomycete, designated strain NEAU-YY211T, was isolated from the rhizosphere soil of wheat (Triticum aestivum L.) collected from Zhumadian, Henan Province, mid-eastern China, and characterised taxonomically using a polyphasic approach. Comparative analysis of the 16S rRNA gene sequence indicated that strain NEAU-YY211T belongs to the genus Pseudonocardia, showing high similarities with respect to Pseudonocardia ammonioxydans H9T (99.1%) and Pseudonocardia antitumoralis SCSIO 01299T (99.0%), respectively. The cell wall was found to contain meso-diaminopimelic acid and the whole cell sugars were identified as arabinose and galactose. The predominant menaquinone of strain NEAU-YY211T was identified as MK-8(H4) and the major fatty acids were identified as iso-C16:0, C17:1ω8c and iso-C16:1. The phospholipid profile was found to consist of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and an unidentified phospholipid. The G+C content of the genomic DNA was determined to be 72.6 mol%. Levels of DNA-DNA relatedness with P. ammonioxydans JCM 12462T and P. antitumoralis DSM 45322T were 54.5 ± 3.5% and 49.8 ± 2.5% (mean ± SD), respectively. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate can be distinguished from closely related type strains and thus represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia tritici sp. nov. is proposed. The type strain is NEAU-YY211T (= DSM 106068T = CGMCC 4.7474T).
Collapse
Affiliation(s)
- Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chuanyu Han
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Ying Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shanwen Jiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Endophytic Actinomycetes from Tea Plants ( Camellia sinensis): Isolation, Abundance, Antimicrobial, and Plant-Growth-Promoting Activities. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1470305. [PMID: 30519568 PMCID: PMC6241348 DOI: 10.1155/2018/1470305] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022]
Abstract
Endophytic actinomycetes are a promising source of novel metabolites with diverse biological activities. Tea plants (Camellia sinensis) produce arsenals of phytochemicals, which are linked to a number of medicinal and nutritional properties. However, a systematic investigation into the abundance and diversity of cultivated actinomycetes residing in tea plants has not been performed. In this study, a total of 46 actinobacteria were recovered from leaf, stem, and root samples of 15 tea cultivars collected in Fujian province, China. Their abundance and diversity were shown to be influenced by both the genotypes and tissue types of tea plants. Based on 16S RNA sequence analysis, these isolates were taxonomically grouped into 11 families and 13 genera, including Streptomyces, Actinomadura, Kribbella, Nocardia, Kytococcus, Leifsonia, Microbacterium, Micromonospora, Mobilicoccus, Mycobacterium, Nocardiopsis, Piscicoccus, and Pseudonocardia. The genus Streptomyces was most prevalent whereas rare genera, Mobilicoccus and Piscicoccus, were reported for the first time to occur as plant endophytes. PCR screening of polyketide synthase genes (PKS-I and PKS-II) and nonribosomal peptide synthetase genes (NRPS), along with antimicrobial assays against a set of bacterial and fungal pathogens, showed that endophytic actinomycetes associated with tea plants have a high potential for producing antimicrobial metabolites. Furthermore, indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were recorded in 93.5% and 21.7% of all isolates, respectively. Overall, these results indicate that endophytic actinomycetes from tea plants represent a valuable source of bioactive metabolites with antibacterial, antifungal, and plant-growth-promoting properties.
Collapse
|
6
|
Chanama S, Janphen S, Suriyachadkun C, Chanama M. Pseudonocardia mangrovi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2018; 68:2949-2955. [PMID: 30040061 DOI: 10.1099/ijsem.0.002927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, aerobic actinomycete, designated strain SMC 195T, was isolated from soil collected from a mangrove forest in Thailand. The strain produced extensively branched substrate and aerial mycelia. The substrate mycelium was fragmented into rod-shaped elements, and spore chains consisting of smooth and rod-shaped spores were formed on the aerial mycelium. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SMC 195T represented a member of the genus Pseudonocardia, and the most closely phylogenetically related species were Pseudonocardia yuanmonensisJCM 18055T (99.2 % 16S rRNA gene sequence similarity), Pseudonocardia halophobicaNRRL B-16514T (98.9 %) and Pseudonocardia kujensisNRRL B-24890T (98.7 %). However, the DNA-DNA relatedness values between SMC 195Tand the closest phylogenetically related species were significantly below 70 %. The G+C content of the genomic DNA was 74±0.8 mol%. The cell wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars consisted of arabinose, galactose, glucose, rhamnose and ribose. The menaquinone was MK-8(H4) only. The major cellular fatty acid was the branched fatty acid iso-C16 : 0 (33.6 %). The polar lipids detected were phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and unidentified glycolipids. On the basis of the results from phenotypic, chemotaxonomic and genotypic studies, it is concluded that SMC 195T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia mangrovi sp. nov. is proposed. The type strain is SMC 195T (=TBRC 7778T=NBRC 113150T).
Collapse
Affiliation(s)
- Suchart Chanama
- 1Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphansa Janphen
- 2Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Chanwit Suriyachadkun
- 3BIOTEC Culture Collection, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Manee Chanama
- 2Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Sujarit K, Sujada N, Kudo T, Ohkuma M, Pathom-Aree W, Lumyong S. Pseudonocardia thailandensis sp. nov., an actinomycete isolated from a subterranean termite nest. Int J Syst Evol Microbiol 2017; 67:2773-2778. [DOI: 10.1099/ijsem.0.002017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kanaporn Sujarit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nikhom Sujada
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Abstract
Type material is the taxonomic device that ties formal names to the physical specimens that serve as exemplars for the species. For the prokaryotes these are strains submitted to the culture collections; for the eukaryotes they are specimens submitted to museums or herbaria. The NCBI Taxonomy Database (http://www.ncbi.nlm.nih.gov/taxonomy) now includes annotation of type material that we use to flag sequences from type in GenBank and in Genomes. This has important implications for many NCBI resources, some of which are outlined below.
Collapse
Affiliation(s)
- Scott Federhen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D, Guven K, Klenk HP. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703-1711. [PMID: 24523445 DOI: 10.1099/ijs.0.059824-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic positions of four novel actinomycetes isolated from soil samples, designated KT2142T, PM2084T, K236T and A4038T, were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Pseudonocardia. Whole-cell hydrolysates of the four strains contained meso-diaminopimelic acid and arabinose and galactose as the diagnostic sugars (cell-wall type IV). Their predominant menaquinone was found to be MK-8(H4). The major fatty acid was iso-C16:0. 16S rRNA gene sequence data supported the classification of the isolates in the genus Pseudonocardia and showed that they formed four distinct branches within the genus. DNA-DNA relatedness studies between the isolates and their phylogenetic neighbours showed that they belonged to distinct genomic species. The four isolates were readily distinguished from one another and from the type strains of species classified in the genus Pseudonocardia based on a combination of phenotypic and genotypic properties. In conclusion, it is proposed that the four isolates be classified in four novel species of the genus Pseudonocardia, for which the names Pseudonocardia cypriaca sp. nov. (type strain KT2142T=KCTC 29067T=DSM 45511T=NRRL B-24882T), Pseudonocardia hierapolitana sp. nov. (type strain PM2084T=KCTC 29068T=DSM 45671T=NRRL B-24879T), Pseudonocardia salamisensis sp. nov. (type strain K236T=KCTC 29100T=DSM 45717T) and Pseudonocardia kujensis sp. nov. (type strain A4038T=KCTC 29062T=DSM 45670T=NRRL B-24890T) are proposed.
Collapse
Affiliation(s)
- Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Aysel Veyisoglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Canik Basari University, 55080 Samsun, Turkey.,Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Demet Tatar
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, 55139 Kurupelit-Samsun, Turkey
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Demet Cetin
- Science Teaching Programme, Gazi Faculty of Education, Gazi University, Ankara, Turkey
| | - Kiymet Guven
- Anadolu University, Faculty of Science, Biology Department, 26470 Eskisehir, Turkey
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Zhang DF, Jiang Z, Li L, Liu BB, Zhang XM, Tian XP, Zhang S, Li WJ. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 64:745-750. [PMID: 24198055 DOI: 10.1099/ijs.0.057844-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic actinomycete, designated strain YIM M13141(T), was isolated from a marine sediment sample from the South China Sea, and its taxonomic position was determined using a polyphasic approach. The strain produced branched substrate mycelium and aerial hyphae, but no diffusible pigments were produced on the media tested. At maturity, substrate mycelium was fragmented and spore chains were formed on aerial hyphae and substrate mycelium. Optimum growth occurred at 28 °C, 1-3% (w/v) NaCl and pH 7.0. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Pseudonocardia, showing highest levels of similarity with respect to Pseudonocardia sichuanensis KLBMP 1115(T) (97.1%), Pseudonocardia tetrahydrofuranoxydans K1(T) (97.1%) and Pseudonocardia kunmingensis YIM 63158(T) (97.0%). Whole-organism hydrolysates of the strain contained meso-diaminopimelic acid and the sugars galactose, glucose, mannose and arabinose. The predominant menaquinone was MK-8(H4). The polar lipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylethanolamine, two unknown phosphoglycolipids and two glycolipids. The major fatty acid was iso-C16 : 0. The G+C content of the genomic DNA was 73.1 mol%. DNA-DNA relatedness with P. tetrahydrofuranoxydans DSM 44239(T) was 42.8 ± 3.5% (mean±sd). Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia sediminis sp. nov. is proposed. The type strain is YIM M13141(T) ( = DSM 45779(T) = JCM 18540(T)).
Collapse
Affiliation(s)
- Dao-Feng Zhang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China.,Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| | - Zhao Jiang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| | - Bing-Bing Liu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Mei Zhang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Xin-Peng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, CAS; RNAM Center for Marine Microbiology, CAS; Guangdong Key Laboratory of Marine Materia Medica; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, CAS; RNAM Center for Marine Microbiology, CAS; Guangdong Key Laboratory of Marine Materia Medica; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China.,Key Laboratory of Biogeography and Bioresource in Arid Land, CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| |
Collapse
|
12
|
Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 2013; 15:3040-53. [PMID: 23663433 DOI: 10.1111/1462-2920.12144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023]
Abstract
Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported. In this study, we examined autotrophy in Pseudonocardia dioxanivorans CB1190, which can grow using H2 and CO2, as well as heterotrophically. Genomic and transcriptomic analysis of CB1190 cells grown with H2/bicarbonate implicated the Calvin-Benson-Bassham (CBB) cycle in growth-supporting CO2 fixation, as well as a [NiFe] hydrogenase-encoding gene cluster in H2 oxidation. The CBB cycle genes are evolutionarily most related to actinobacterial homologues, although synteny has not been maintained. Ribulose-1,5-bisphosphate carboxylase activity was confirmed in H2/bicarbonate-grown CB1190 cells and was detected in cells grown with the C1 compounds formate, methanol and carbon monoxide. We also demonstrated the upregulation of CBB cycle genes upon exposure of CB1190 to these C1 substrates, and identified genes putatively involved in generating CO2 from the C1 substrates by using RT-qPCR. Finally, the potential for autotrophic growth of other Pseudonocardia spp. was explored, and the ecological implications of autotrophy in attine ant- and plant root-associated Pseudonocardia discussed.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
13
|
Cuesta G, Soler A, Alonso JL, Ruvira MA, Lucena T, Arahal DR, Goodfellow M. Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek 2012; 103:135-42. [PMID: 22899021 DOI: 10.1007/s10482-012-9792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
A novel actinomycete, designated PA3(T), was isolated from an oil refinery wastewater treatment plant, located in Palos de la Frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM 44247(T). The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H(4)) as the predominant menaquinone and iso-C(16:0) as the major fatty acid, are consistent with its classification in the genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P. asaccharolytica DSM 44247(T) showed that they belonged to separate genomic species. The two strains were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed that isolate PA3(T) represents a novel species for which the name Pseudonocardia hispaniensis sp. nov. is proposed. The type strain is PA3(T) (= CCM 8391(T) = CECT 8030(T)).
Collapse
Affiliation(s)
- G Cuesta
- Área de Microbiología, Departamento de Biotecnología, E.T.S.I. Agronómica y Medio Natural, Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Xing K, Qin S, Bian GK, Zhang YJ, Zhang WD, Dai CC, Liu CH, Li WJ, Jiang JH. Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour. Antonie van Leeuwenhoek 2012; 102:659-67. [DOI: 10.1007/s10482-012-9764-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 11/30/2022]
|
15
|
Zhao LX, Xu LH, Jiang CL. Methods for the study of endophytic microorganisms from traditional Chinese medicine plants. Methods Enzymol 2012; 517:3-21. [PMID: 23084931 DOI: 10.1016/b978-0-12-404634-4.00001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Plant endophytes are very numerous and widely distributed in nature, their relationships being described as a balanced symbiotic continuum ranging from mutualism through commensalism to parasitism during a long period of coevolution. Traditional Chinese medicines have played a very important role in disease treatment in China and other Asian countries. Investigations show that these medicinal plants harbor endophytes with different kinds of ecological functions, and some of them have potential to produce bioactive small-molecule compounds. This chapter will focus on the selective isolation methods, the diversity of some endophytes (actinobacteria and fungi) isolated from Traditional Chinese Medicine (TCM) plants, and the bioactive compounds from selected endophytic actinobacteria reported in the past 3 years.
Collapse
Affiliation(s)
- Li-Xing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan, China
| | | | | |
Collapse
|
16
|
Nie GX, Ming H, Wei DQ, Zhou EM, Tang X, Cheng J, Tang SK, Li WJ. Pseudonocardia yuanmoensis sp. nov., a novel actinobacterium isolated from soil in Yunnan, south-west China. Antonie van Leeuwenhoek 2011; 101:753-60. [DOI: 10.1007/s10482-011-9689-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
17
|
Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie van Leeuwenhoek 2011; 101:515-27. [PMID: 22038129 DOI: 10.1007/s10482-011-9661-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
Endophytic actinobacteria isolated from Artemisia annua were characterized and evaluated for their bioactivities. A total of 228 isolates representing at least 19 different genera of actinobacteria were obtained and several of them seemed to be novel taxa. An evaluation of antimicrobial activity showed that more isolates possessed activity towards plant pathogens than activity against other pathogenic bacteria or yeasts. High frequencies of PCR amplification were obtained for type I polyketide synthases (PKS-I, 21.1%), type II polyketide synthases (PKS-II, 45.2%) and nonribosomal peptide synthetases (NRPS, 32.5%). The results of herbicidal activity screening indicated that 19 out of 117 samples of fermentation broths completely inhibited the germination of Echinochloa crusgalli. This study indicated that endophytic actinobacteria associated with A. annua are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pseudonocardia serianimatus sp. nov., a novel actinomycete isolated from the surface-sterilized leaves of Artemisia annua L. Antonie van Leeuwenhoek 2011; 100:521-8. [DOI: 10.1007/s10482-011-9607-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
|
19
|
Pseudonocardia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisia annua L. Antonie van Leeuwenhoek 2011; 100:35-42. [DOI: 10.1007/s10482-011-9562-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
20
|
Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ, Kim CJ, Xu LH, Li WJ. Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 2010; 61:2292-2297. [PMID: 20971834 DOI: 10.1099/ijs.0.027607-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, aerobic, actinobacterial strain with rod-shaped spores, designated YIM 63158(T), was isolated from the surface-sterilized roots of Artemisia annua L. collected from Yunnan province, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 63158(T) belonged to the genus Pseudonocardia. The closest neighbours were 'Pseudonocardia sichuanensis' KLBMP 1115 (99.9 % 16S rRNA gene sequence similarity), Pseudonocardia adelaidensis EUM 221(T) (99.1 %) and Pseudonocardia zijingensis DSM 44774(T) (98.8 %); sequence similarities to other members of the genus Pseudonocardia ranged from 98.6 to 94.4 %. The chemotaxonomic characteristics, such as the cell-wall diaminopimelic acid, whole-cell sugars, fatty acid components and major menaquinones, suggested that the isolate belonged to the genus Pseudonocardia. The G+C content of the genomic DNA was 73.3 mol%. On the basis of physiological, biochemical and chemotaxonomic data, including low DNA-DNA relatedness between the isolate and other members of the genus Pseudonocardia, it is proposed that strain YIM 63158(T) represents a novel species in this genus, with the name Pseudonocardia kunmingensis sp. nov. The type strain is YIM 63158(T) ( = DSM 45301(T) = CCTCC AA 208078(T)). [corrected].
Collapse
Affiliation(s)
- Guo-Zhen Zhao
- The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Jie Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Hai-Yu Huang
- The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Wen-Yong Zhu
- The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Dong-Jin Park
- Korea Research Institutes of Biosciences and Biotechnology 52, Eoeun-dong, Yuseong gu, Daejeon, 305-333, Republic of Korea
| | - Chang-Jin Kim
- Korea Research Institutes of Biosciences and Biotechnology 52, Eoeun-dong, Yuseong gu, Daejeon, 305-333, Republic of Korea
| | - Li-Hua Xu
- The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| | - Wen-Jun Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,The Key Laboratory for Microbial Resources of the Ministry of Education, PR China and Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, PR China
| |
Collapse
|