1
|
Tan MF, Li HQ, Yang Q, Zhang FF, Tan J, Zeng YB, Wei QP, Huang JN, Wu CC, Li N, Kang ZF. Prevalence and antimicrobial resistance profile of bacterial pathogens isolated from poultry in Jiangxi Province, China from 2020 to 2022. Poult Sci 2023; 102:102830. [PMID: 37343345 PMCID: PMC10404785 DOI: 10.1016/j.psj.2023.102830] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Poultry is one of the most commonly farmed species and the most widespread meat industries. However, numerous poultry flocks have been long threatened by pathogenic bacterial infections, especially antimicrobial resistant pathogens. Here the prevalence and the antimicrobial resistance (AMR) profiles of bacterial pathogens isolated from poultry in Jiangxi Province, China were investigated. From 2020 to 2022, 283 tissue and liquid samples were collected from clinically diseased poultry, including duck, chicken, and goose, with an overall positive isolation rate of 62.90%. Among all the 219 bacterial isolates, 29 strains were gram-positive and 190 strains were gram-negative. Major bacteria species involved were avian pathogenic Escherichia coli (APEC; 57.53%; 126/219), followed by Salmonella spp. (11.87%, 26/219), Pasteurella multocida (6.39%, 14/219), and Staphylococcus spp. (1.22%, 11/219). Antimicrobial susceptibility testing showed the APEC isolates displayed considerably higher levels of AMR than the Salmonella and P. multocida isolates. The APEC isolates showed high resistance rate to amoxicillin (89.68%), ampicillin (89.68%), and florfenicol (83.33%), followed by streptomycin (75.40%), cefradine (65.87%), and enrofloxacin (64.29%). Multidrug-resistant isolates were observed in APEC (99.21%), Salmonella spp. (96.16%), and P. multocida (85.71%), and nearly 3 quarters of the APEC strains were resistant to 7 or more categories of antimicrobial drugs. Moreover, blaNDM genes associated with carbapenemase resistance and mcr-1 associated with colisitin resistance were detected in the APEC isolates. Our findings could provide evidence-based guidance for veterinarians to prevent and control bacterial diseases, and be helpful for monitoring the emerging and development of AMR in poultry bacterial pathogens.
Collapse
Affiliation(s)
- Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Hai-Qin Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qun Yang
- Institute of Agricultural Engineering, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fan-Fan Zhang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yan-Bing Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qi-Peng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jiang-Nan Huang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Cheng-Cheng Wu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Na Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zhao-Feng Kang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| |
Collapse
|
2
|
Kirchner M, Hunt B, Carson T, Duggett N, Muchowski J, Whatmore AM. Actinobacillus vicugnae sp. nov., isolated from alpaca ( Vicugna pacos). Int J Syst Evol Microbiol 2019; 69:3170-3177. [PMID: 31395108 DOI: 10.1099/ijsem.0.003607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten strains of an Actinobacillus-like organism were isolated from alpaca (Vicugna pacos) in the UK over a period of 5 years, with no known epidemiological linkages. The isolates are distinct, based on both phenotype and genotype, from any previously described Actinobacillus species. Molecular analysis, based on 16S rRNA, rpoB and infB gene sequences, placed the isolates as a novel, early branching, lineage within the currently recognised Actinobacillus sensu stricto. In agreement with the results of the single-gene analysis, average nucleotide identity values, based on whole genome sequences, showed very similar identities to a number of members of the Actinobacillus sensu stricto notably Actinobacillus equuli, Actinobacillus suis and Actinobacillus ureae. At least two phenotypic characteristics differentiate the alpaca isolates from other Actinobacillus sensu stricto species, and from taxa likely falling within this group but awaiting formal species description, with Actinobacillus anseriformium and A. equulisubsp. haemolyticus being the most closely related phenotypically. The alpaca isolates can be differentiated from A. anseriformium by production of β-galactosidase (ONPG) and acid from raffinose, and from A. equulisubsp. haemolyticus by production of acid from d-sorbitol and failure to produce acid from d-xylose. Isolates were obtained from multiple sites in alpaca including respiratory tract, alimentary tract and internal organs although further evidence is required to understand any pathogenic significance. Based on the results of characterization described here, it is proposed that the isolates constitute a novel species, Actinobacillus vicugnae sp. nov. The type strain is W1618T (LMG30745T NCTC14090T) isolated in the UK in 2012 from oesophageal ulceration in an alpaca (Vicugna pacos).
Collapse
Affiliation(s)
- Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Brian Hunt
- Animal and Plant Health Agency (Bury St. Edmunds), Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK
| | - Therese Carson
- Animal and Plant Health Agency (Bury St. Edmunds), Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jakub Muchowski
- Department of Bacteriology, Animal and Plant Health Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Adrian M Whatmore
- Department of Bacteriology, Animal and Plant Health Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
3
|
Nicklas W, Bisgaard M, Aalbæk B, Kuhnert P, Christensen H. Reclassification of Actinobacillus muris as Muribacter muris gen. nov., comb. nov. Int J Syst Evol Microbiol 2015; 65:3344-3351. [DOI: 10.1099/ijsem.0.000417] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To reinvestigate the taxonomy of [Actinobacillus] muris, 474 strains, mainly from mice and rats, were characterized by phenotype and 130 strains selected for genotypic characterization by 16S rRNA and partial rpoB gene sequencing. The type strain was further investigated by whole-genome sequencing. Phylogenetic analysis of the DNA sequences showed one monophyletic group with intragroup similarities of 96.7 and 97.2 % for the 16S rRNA and rpoB genes, respectively. The highest 16S rRNA gene sequence similarity to a taxon with a validly published name outside the group was 95.9 %, to the type strain of [Pasteurella] pneumotropica. The closest related taxon based on rpoB sequence comparison was ‘Haemophilus influenzae-murium’, with 88.4 % similarity. A new genus and a new combination, Muribacter muris gen. nov., comb. nov., are proposed based on a distinct phylogenetic position based on 16S rRNA and rpoB gene sequence comparisons, with major divergence from the existing genera of the family Pasteurellaceae. The new genus has the characteristics of [A.] muris with the emendation that acid formation from ( − )-d-mannitol and hydrolysis of aesculin are variable, while the α-glucosidase test is positive. There is no requirement for exogenously supplied NAD (V factor) for the majority of strains investigated; however, one strain was found to require NAD. The major fatty acids of the type strain of Muribacter muris were C14 : 0, C14 : 0 3-OH/iso-C16 : 1 I, C16 : 1ω7c and C16 : 0, which is in line with most genera of the Pasteurellaceae. The type strain of Muribacter muris is CCUG 16938T ( = NCTC 12432T = ATCC 49577T).
Collapse
Affiliation(s)
- Werner Nicklas
- Microbiological Diagnostics, German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - Magne Bisgaard
- Professor emeritus, Horsevænget 40, DK-4130 Viby Sjælland, Denmark
| | - Bent Aalbæk
- Department of Veterinary Disease Biology, VetSchool, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggass-Strasse 122, CH-3001 Bern, Switzerland
| | - Henrik Christensen
- Department of Veterinary Disease Biology, VetSchool, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Pérez Márquez VM, Ochoa JL, Cruz CV, Alonso PS, Olmedo-Alvarez G, Vaca S, Abascal EN. Isolation of Actinobacillus pleuropneumoniae from layer hens showing clinical signs of infectious coryza. Avian Dis 2015; 58:638-41. [PMID: 25619011 DOI: 10.1637/10798-021314-case.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actinobacillus pleuropneumoniae is the causal agent of porcine pleuropneumonia, which is a highly contagious respiratory disease that affects swine nearly exclusively. An isolate with characteristics of some Pasteurellaceae family members (Gram-negative bacterium, pleomorphic, and NAD-dependent) was isolated from layer hens showing clinical signs of infectious coryza. This bacterium presented hemolysis on rabbit red blood cell agar plates, and PCR amplification and sequencing of its 16S rDNA gene indicated 99% identity with A. pleuropneumoniae serotypes 3 and 7. The presence of a putative apxIIA gene was also determined by PCR. A single, smooth colony of this bacterium inoculated in five, 7-day-old chicken embryos via the yolk sac route induced 100% mortality. However, inoculation into 10-wk-old, specific-pathogen-free chickens induced only light facial swelling, and reisolation of the inoculated bacterium was negative.
Collapse
|
5
|
Hunt B, Bidewell C, Koylass MS, Whatmore AM. A novel taxon within the genus Actinobacillus isolated from alpaca (Vicugna pacos) in the United Kingdom. Vet Microbiol 2013; 163:383-7. [PMID: 23375653 DOI: 10.1016/j.vetmic.2012.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Members of the genus Actinobacillus comprise a diverse group of bacteria associated with mammals and birds including both pathogens and commensals. Here we describe the isolation of a previously undescribed Actinobacillus-like organism from seven epidemiologically unrelated infections of alpaca. The isolates are phenotypically and genotypically distinct from any previously described Actinobacillus species but 16S rRNA analysis unequivocally places the isolates as a novel lineage within the Actinobacillus sensu stricto. The clinical relevance of the organism requires further study however isolation in pure culture from organs of some cases suggests it may be associated with septicaemia in juvenile alpaca.
Collapse
Affiliation(s)
- Brian Hunt
- AHVLA Bury St. Edmunds, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, United Kingdom
| | | | | | | |
Collapse
|
6
|
Al-Khalaf RA, Al-Awadhi HA, Al-Beloshei N, Afzal M. Lipid and fatty acid profile of Geobacillus kaustophilus in response to abiotic stress. Can J Microbiol 2012; 59:117-25. [PMID: 23461519 DOI: 10.1139/cjm-2012-0601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Geobacillus kaustophilus is an important food-borne, spore-forming, thermotolerant bacterium. It has a good potential for biotransformation of steroid hormones, such as progesterone and testosterone. In this study, we report G. kaustophilus membrane lipid modifications in response to temperature shock, salinity, incubation time, and pH. Total lipids significantly increased in response to increasing temperature, incubation time, and salt concentration. However, the bacterium presented a significant decrease in the accumulation of total lipids in response to pH shock. The ratio of branched-chain fatty acids/straight-chain fatty acids decreased significantly under all stress conditions. With an increase in temperature, incubation time, and salt concentration, the ratio of iso-fatty acids/anteiso-fatty acids increased significantly, while this ratio remained unaffected by changes in the pH of the growth medium. Our results suggest a modification occurs in the bacterial membrane structure in response to temperature, salinity, incubation time, and pH shock. The variable abiotic stress resulted in a multiple increase in odd-numbered-carbon and low-melting-point anteiso-branched-chain fatty acids, helping the membrane keep its integrity, fluidity, and function for growth of the bacteria under abiotic stress conditions.
Collapse
Affiliation(s)
- Ranya A Al-Khalaf
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
7
|
Kuhnert P, Bisgaard M, Korczak BM, Schwendener S, Christensen H, Frey J. Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J Microbiol Methods 2012; 89:1-7. [PMID: 22343217 DOI: 10.1016/j.mimet.2012.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
Species of the family Pasteurellaceae play an important role as primary or opportunistic animal pathogens. In veterinary diagnostic laboratories identification of this group of bacteria is mainly done by phenotypic assays while genetic identification based on housekeeping genes is mostly used for research and particularly important diagnostic samples. MALDI-TOF MS seems to represent a promising alternative to the currently practiced cumbersome, phenotypic diagnostics carried out in many veterinary diagnostic laboratories. We therefore assessed its application for animal associated members of the family Pasteurellaceae. The Bruker Biotyper 3.0 database was complemented with reference spectra of clinically relevant as well as commensal animal Pasteurellaceae species using generally five strains per species or subspecies and tested for its diagnostic potential with additional, well characterized field isolates. About 250 strains comprising 15 genera and more than 40 species and subspecies were included in the study, covering most representatives of the family. A high discrimination at the genus and species level was observed. Problematic discrimination was only observed with some closely related species and subspecies. MALDI-TOF MS was shown to represent a highly potent method for the diagnosis of this group of animal pathogens, combining speed, precision and low running costs.
Collapse
Affiliation(s)
- Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|