1
|
Gößringer M, Wäber NB, Wiegard JC, Hartmann RK. Characterization of RNA-based and protein-only RNases P from bacteria encoding both enzyme types. RNA (NEW YORK, N.Y.) 2023; 29:376-391. [PMID: 36604113 PMCID: PMC9945441 DOI: 10.1261/rna.079459.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
A small group of bacteria encode two types of RNase P, the classical ribonucleoprotein (RNP) RNase P as well as the protein-only RNase P HARP (homolog of Aquifex RNase P). We characterized the dual RNase P activities of five bacteria that belong to three different phyla. All five bacterial species encode functional RNA (gene rnpB) and protein (gene rnpA) subunits of RNP RNase P, but only the HARP of the thermophile Thermodesulfatator indicus (phylum Thermodesulfobacteria) was found to have robust tRNA 5'-end maturation activity in vitro and in vivo in an Escherichia coli RNase P depletion strain. These findings suggest that both types of RNase P are able to contribute to the essential tRNA 5'-end maturation activity in T. indicus, thus resembling the predicted evolutionary transition state in the progenitor of the Aquificaceae before the loss of rnpA and rnpB genes in this family of bacteria. Remarkably, T. indicus RNase P RNA is transcribed with a P12 expansion segment that is posttranscriptionally excised in vivo, such that the major fraction of the RNA is fragmented and thereby truncated by ∼70 nt in the native T. indicus host as well as in the E. coli complementation strain. Replacing the native P12 element of T. indicus RNase P RNA with the short P12 helix of Thermotoga maritima RNase P RNA abolished fragmentation, but simultaneously impaired complementation efficiency in E. coli cells, suggesting that intracellular fragmentation and truncation of T. indicus RNase P RNA may be beneficial to RNA folding and/or enzymatic activity.
Collapse
Affiliation(s)
- Markus Gößringer
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Nadine B Wäber
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Jana C Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
2
|
Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Huntemann M, Liolios K, Pagani I, Mavromatis K, Ivanova N, Pati A, Chen A, Palaniappan K, Jeffries CD, Hauser L, Land M, Mwirichia R, Rohde M, Abt B, Detter JC, Woyke T, Eisen JA, Markowitz V, Hugenholtz P, Göker M, Kyrpides NC, Klenk HP. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305(T)), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae. Stand Genomic Sci 2014; 9:10. [PMID: 25780503 PMCID: PMC4334474 DOI: 10.1186/1944-3277-9-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
Collapse
Affiliation(s)
- Carmen Scheuner
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Brian J Tindall
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Megan Lu
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cynthia D Jeffries
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Romano Mwirichia
- Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Birte Abt
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - John C Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jonathan A Eisen
- DOE Joint Genome Institute, Walnut Creek, California, USA
- University of California Davis Genome Center, Davis, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Markus Göker
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Peter Klenk
- DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| |
Collapse
|
3
|
rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie van Leeuwenhoek 2013; 104:477-88. [PMID: 23904187 DOI: 10.1007/s10482-013-9980-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
The 16S rRNA gene has been used in the last decades as a gold standard for determining the phylogenetic position of bacteria and their taxonomy. It is a well conserved gene, with some variations, present in all bacteria and allows the reconstruction of genealogies of microorganisms. Nevertheless, this gene has its limitations when inferring phylogenetic relationships between closely related isolates. To overcome this problem, DNA-DNA hybridization appeared as a solution to clarify interspecies relationships when the sequence similarity of the 16S rRNA gene is above 97 %. However, this technique is time consuming, expensive and laborious and so, researchers developed other molecular markers such as sequencing of housekeeping or functional genes for accurate determination of bacterial phylogeny. One of these genes that have been used successfully, particularly in clinical microbiology, codes for the beta subunit of the RNA polymerase (rpoB). The rpoB gene is sufficiently conserved to be used as a molecular clock, it is present in all bacteria and it is a mono-copy gene. In this study, rpoB gene sequencing was applied to the phylum Planctomycetes. Based on the genomes of 19 planctomycetes it was possible to determine the correlation between the rpoB gene sequence and the phylogenetic position of the organisms at a 95-96 % sequence similarity threshold for a novel species. A 1200-bp fragment of the rpoB gene was amplified from several new planctomycetal isolates and their intra and inter-species relationships to other members of this group were determined based on a 96.3 % species border and 98.2 % for intraspecies resolution.
Collapse
|
4
|
Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Planctomyces limnophilus type strain (Mü 290). Stand Genomic Sci 2010; 3:47-56. [PMID: 21304691 PMCID: PMC3035269 DOI: 10.4056/sigs.1052813] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planctomyces limnophilus Hirsch and Müller 1986 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall which is stabilized by a proteinaceous layer rather than a peptidoglycan layer. Besides Pirellula staleyi, this is the second completed genome sequence of the family Planctomycetaceae. P. limnophilus is of interest because it differs from Pirellula by the presence of a stalk and its structure of fibril bundles, its cell shape and size, the formation of multicellular rosettes, low salt tolerance and red pigmented colonies. The 5,460,085 bp long genome with its 4,304 protein-coding and 66 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
5
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|