1
|
Ai C, Tong A, Wen J, Chen R, Huang Y, Zhao C. Variations in the substrate composition and microbial community structure in the anaerobic fermentation process using the green algae Enteromorpha prolifera. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEnteromorpha prolifera is a nutrient-rich green alga and abound in the Yellow Sea and the Bohai Sea of China. In this study, E. prolifera was anaerobically digested for biogas production. The variations of chemical compositions and microbial community structure as well as the physical structure of E. prolifera in anaerobic digestion process were investigated. This is the first report of multiple ways to deeply analysis the process of E. prolifera anaerobic digestion. Results from the present work showed that the biogas obtained from E. prolifera anaerobic digestion could achieve 409.7 mL•g− 1 TS with an average methane concentration of 53.2%, and the VFAs content in substrate played a vital role for driving the biogas production of flora. Moreover, S1 of Thermotogaceae and Cenarchaeum, the dominant bacteria and archaea in digestion flora, respectively, played important roles in degrading E. prolifera, acidizing slurry, and providing methanogenic substrate for methanogens.
Graphical Abstract
Collapse
|
2
|
Inhibition of hydrogen production by endogenous microorganisms from food waste. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00235-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Tanikawa D, Seo S, Motokawa D. Development of a molasses wastewater treatment system equipped with a biological desulfurization process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24738-24748. [PMID: 31820243 DOI: 10.1007/s11356-019-07077-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, a laboratory scale experiment for the treatment of synthetic molasses wastewater using a combination of an anaerobic baffled reactor (ABR) and a two-stage down-flow hanging sponge (TSDHS) reactor (ABR-TSDHS system) was conducted. The TSDHS comprised a closed-type first-stage down-flow hanging sponge (first DHS) for desulfurization and an open-type second-stage DHS (second DHS) for post-treatment of effluent from the ABR and first DHS. Effluent from the second DHS was sprinkled on top of the first DHS, whereas biogas produced from the ABR was supplied to its bottom. A chemical oxygen demand (COD) removal efficiency of 88.3% was found for the ABR-TSDHS system during the final treatment phase. The ABR achieved a maximum organic loading rate (OLR) of 3.70 kg COD/(m3 day). Most of the organic matter was degraded in the first compartment of the ABR, with methane-producing archaea as its main consumer. The biogas generated by the ABR contained high concentrations of hydrogen sulfide (up to 4,500 ppm). In the TSDHS, the first DHS achieved 87.3% hydrogen sulfide removal via dissolution into sprinkled effluent water. Dissolved sulfide in the first DHS effluent was oxidized to sulfate in the second DHS in the absence of aeration. In addition, 85.0% of the ammonia and 57.7% of the total nitrogen were removed in the second DHS via biological reactions, including sulfur-based autotrophic denitrification. Therefore, the ABR-TSDHS system can be applied to not only molasses wastewater treatment but also the desulfurization of the produced biogas.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan.
| | - Shogo Seo
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| | - Daisuke Motokawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| |
Collapse
|
4
|
Rubiano-Labrador C, Díaz-Cárdenas C, López G, Gómez J, Baena S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019; 23:793-808. [PMID: 31555903 DOI: 10.1007/s00792-019-01132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias D.T. y C., Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia.
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Javier Gómez
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| |
Collapse
|
5
|
Hatmaker EA, Klingeman DM, Martin RK, Guss AM, Elkins JG. Complete Genome Sequence of Caloramator sp. Strain E03, a Novel Ethanologenic, Thermophilic, Obligately Anaerobic Bacterium. Microbiol Resour Announc 2019; 8:e00708-19. [PMID: 31395644 PMCID: PMC6687931 DOI: 10.1128/mra.00708-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Caloramator sp. strain E03, an anaerobic thermophile that was isolated from a hot spring within the Rabbit Creek area of Yellowstone National Park. The assembly contains a single 2,984,770-bp contig with a G+C content of 31.3% and is predicted to encode 2,678 proteins.
Collapse
Affiliation(s)
- E Anne Hatmaker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Roman K Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
6
|
Chades T, Scully SM, Ingvadottir EM, Orlygsson J. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Clostridia. Front Microbiol 2018; 9:1931. [PMID: 30177924 PMCID: PMC6110305 DOI: 10.3389/fmicb.2018.01931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023] Open
Abstract
Mannitol-containing macro algae biomass, such as Ascophyllum nodosum and Laminaria digitata, are a potential feedstock for the production of biofuels such as bioethanol. The purpose of this work was to evaluate the ability of thermophilic anaerobes within Class Clostridia to ferment mannitol and mannitol-containing algal extracts. Screening of the type strains of six genera, Caldanaerobius, Caldanaerobacter, Caldicellulosiruptor, Thermoanaerobacter, Thermobrachium, and Thermoanaerobacterium) was conducted on 20 mM mannitol and revealed that 11 of 41 strains could utilize mannitol with ethanol being the dominant end-product. Mannitol utilization seems to be most common within the genus of Thermoanaerobacter (7 of 16 strains) with yields up to 88% of the theoretical yield in the case of Thermoanaerobacter pseudoethanolicus. Six selected mannitol-degrading strains (all Thermoanaerobacter species) were grown on mannitol extracts prepared from A. nodosum and L. digitata. Five of the strains produced similar amounts of ethanol as compared with ethanol yields from mannitol only. Finally, T. pseudoethanolicus was kinetically monitored using mannitol and mannitol extracts made from two macro algae species, A. nodosum and L. digitata for end-product formation.
Collapse
Affiliation(s)
- Theo Chades
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Sean M Scully
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Eva M Ingvadottir
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | - Johann Orlygsson
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
7
|
Coma M, Vilchez-Vargas R, Roume H, Jauregui R, Pieper DH, Rabaey K. Product Diversity Linked to Substrate Usage in Chain Elongation by Mixed-Culture Fermentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6467-76. [PMID: 27162101 DOI: 10.1021/acs.est.5b06021] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acetate and ethanol can be converted to caproic acid by microorganisms through reverse β-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate.
Collapse
Affiliation(s)
- Marta Coma
- Center for Microbial Ecology and Technology, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Ramiro Vilchez-Vargas
- Center for Microbial Ecology and Technology, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Hugo Roume
- Center for Microbial Ecology and Technology, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Ruy Jauregui
- Microbial Interactions and Processes Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research , Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research , Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds. Appl Environ Microbiol 2016; 82:2506-15. [PMID: 26896127 DOI: 10.1128/aem.03409-15] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia,Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4 (+), and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia,Bacteroidia,Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud.
Collapse
|
9
|
Kinet R, Destain J, Hiligsmann S, Thonart P, Delhalle L, Taminiau B, Daube G, Delvigne F. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach. BIORESOURCE TECHNOLOGY 2015; 189:138-144. [PMID: 25879181 DOI: 10.1016/j.biortech.2015.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology.
Collapse
Affiliation(s)
- R Kinet
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium.
| | - J Destain
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - S Hiligsmann
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - P Thonart
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - L Delhalle
- Quality Partner S.A., Rue Hayeneux, 62, Herstal B-4040, Belgium
| | - B Taminiau
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - G Daube
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - F Delvigne
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| |
Collapse
|
10
|
Moshi AP, Hosea KMM, Elisante E, Mamo G, Mattiasson B. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. BIORESOURCE TECHNOLOGY 2015; 180:128-136. [PMID: 25594508 DOI: 10.1016/j.biortech.2014.12.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The thermoanaerobe, Caloramator boliviensis was used to ferment starch hydrolysate from inedible wild cassava to ethanol at 60°C. A raw starch degrading α-amylase was used to hydrolyse the cassava starch. During fermentation, the organism released CO2 and H2 gases, and Gas Endeavour System was successfully used for monitoring and recording formation of these gaseous products. The bioethanol produced in stoichiometric amounts to CO2 was registered online in Gas Endeavour software and correlated strongly (R(2)=0.99) with values measured by HPLC. The organism was sensitive to cyanide that exists in cassava flour. However, after acclimatisation, it was able to grow and ferment cassava starch hydrolysate containing up to 0.2ppm cyanide. The reactor hydrogen partial pressure had influence on the bioethanol production. In fed-batch fermentation by maintaining the hydrogen partial pressure around 590Pa, the organism was able to ferment up to 76g/L glucose and produced 33g/L ethanol.
Collapse
Affiliation(s)
- Anselm P Moshi
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania; Tanzania Industrial Research and Development Organization (TIRDO), Kimweri Avenue, TIRDO Complex, Msasani, P.O. Box 23235, Dar-es salaam, Tanzania.
| | - Ken M M Hosea
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania.
| | - Emrode Elisante
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania.
| | - G Mamo
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; also at Indienz AB, Annebergs Gård, SE-26873 Billeberga, Sweden.
| |
Collapse
|
11
|
Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. ENERGIES 2014. [DOI: 10.3390/en8010001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Tomás AF, Karakashev D, Angelidaki I. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extremely thermophilic, high ethanol-yielding bacterium isolated from household waste. Int J Syst Evol Microbiol 2013. [DOI: 10.1099/ijs.0.045211-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01T, was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5–2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h−1. DNA G+C content was 34.2 mol%. Strain DTU01T could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01T was shown to be closely related to
Thermoanaerobacter mathranii
A3T,
Thermoanaerobacter italicus
Ab9T and
Thermoanaerobacter thermocopriae
JT3-3T, with 98–99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01T as a representative of a novel species within the genus
Thermoanaerobacter
, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01T ( = DSM 25963T = KCTC 4529T = VKM B-2752T = CECT 8142T).
Collapse
Affiliation(s)
- Ana Faria Tomás
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, 2800 Kongens Lyngby, Denmark
| | - Dimitar Karakashev
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, 2800 Kongens Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, 2800 Kongens Lyngby, Denmark
| |
Collapse
|