1
|
Draft Genome of
Kangiella
sp. Strain TOML190, Isolated from the Surface of the Striped Shore Crab, Pachygrapsus crassipes. Microbiol Resour Announc 2022; 11:e0043722. [PMID: 35924936 PMCID: PMC9476960 DOI: 10.1128/mra.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kangiella
sp. strain TOML190 is a strain from the
Kangiella
genus that was isolated from the surface of a crustacean. Genetic background analysis of this strain shows that it harbors unique features possibly related to its symbiotic adaptation to its residing host.
Collapse
|
2
|
Yang M, Xue Q, Zuo Z, Zhou J, Zhang S, Li M, Zhou H, Zhang M, Kumar S, Li W, Chen G, Zhao D, Xiang H. Aliidiomarina halalkaliphila sp. nov., a haloalkaliphilic bacterium isolated from a soda lake in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 2022; 72. [PMID: 35244531 PMCID: PMC9558577 DOI: 10.1099/ijsem.0.005263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A haloalkaliphilic strain (IM 1326T) was isolated from brine sampled at a soda lake in the Inner Mongolia Autonomous Region, China. Cells of the strain were rod-shaped and motile. Strain IM 1326T was able to grow at 4–42 °C (optimum, 37 °C) with 0–13.0 % (w/v) NaCl concentrations (optimum at 4.0–6.0 %) and at pH 7.5–11.0 (optimum at 9.0–10.0). The 16S rRNA gene phylogenetic analysis revealed that the isolate belongs to the genus Aliidiomarina and is closely related to the type strains of Aliidiomarina sanyensis (95.8 % sequence similarity), Aliidiomarina shirensis (95.7 %), Aliidiomarina iranensis (95.4 %) and Aliidiomarina haloalkalitolerans (95.3 %). The whole genome of strain IM 1326T was sequenced, and the genomic DNA G+C content was 49.7 mol%. Average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the isolate and the related Aliidiomarina species were 68.1–84.9 %, 76–78 % and 18.4–20.4 %, respectively. The respiratory quinone was ubiquinone-8. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminophospholipid. The predominant cellular fatty acids were summed feature 9 (10-methyl-C16 : 0/iso-C17 : 1 ω9c, 22.2 %), iso-C15 : 0 (16.1 %) and iso-C17 : 0 (13.1 %). Based on the results of phylogenetic analysis, genome relatedness, and the physiological and chemotaxonomic properties of the isolate, strain IM 1326T is considered to represent a novel species of the genus Aliidiomarina, for which the name Aliidiomarina halalkaliphila sp. nov. is proposed (type strain IM 1326T=CGMCC 1.17056T=JCM 34227T).
Collapse
Affiliation(s)
- Ming Yang
- Sichuan Normal University, Sichuan 610101, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Qiong Xue
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zhenqiang Zuo
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Shengjie Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Manqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Wei Li
- Sichuan Normal University, Sichuan 610101, PR China
| | - Guiying Chen
- Sichuan Normal University, Sichuan 610101, PR China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Peng LY, Yin R, Gao SK, Jiang HN, Liu XX, Ma Y, Zhou YX. Kangiella shandongensis sp. nov., a novel species isolated from saltern in Yantai, China. Antonie van Leeuwenhoek 2021; 115:33-40. [PMID: 34743249 DOI: 10.1007/s10482-021-01682-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
A Gram-stain-negative, wheat, rod-shaped, non-motile, non-spore forming, and facultatively anaerobic bacterium strain, designated as PIT, was isolated from saline silt samples collected in saltern in Yantai, Shandong, China. Growth was observed within the ranges 4-45 °C (optimally at 33 °C), pH 6.0-9.0 (optimally at pH 7.0) and 1.0-11.0% NaCl (optimally at 3.0%, w/v). Strain PIT showed highest 16S rRNA gene sequence similarity to Kangiella sediminilitoris BB-Mw22T (98.3%) and Kangiella taiwanensis KT1T (98.3%). The major cellular fatty acids (> 10% of the total fatty acids) were iso-C15:0 (52.7%) and summed featured 9 (iso-C17:1ω9c/C16:0 10-methyl, 11.8%). The major polar lipids identified were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol. The major respiratory isoprenoid quinone was Q-8. The G + C content of the genomic DNA was 45.8%. Average Nucleotide Identity values between whole genome sequences of strain PIT and next related type strains supported the novel species status. Based on physiological, biochemical, chemotaxonomic characteristics and genomic analysis, strain PIT is considered to represent a novel species within the genus Kangiella, for which the name Kangiella shandongensis sp. nov. is proposed. The type strain is PIT (= KCTC 82509 T = MCCC 1K04352T).
Collapse
Affiliation(s)
- Li-Yang Peng
- Marine College, Shandong University, Weihai, 264209, China
| | - Rui Yin
- Marine College, Shandong University, Weihai, 264209, China
| | - Shu-Kun Gao
- Marine College, Shandong University, Weihai, 264209, China
| | - Hui-Ning Jiang
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiao-Xiao Liu
- Marine College, Shandong University, Weihai, 264209, China
| | - Yu Ma
- Marine College, Shandong University, Weihai, 264209, China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
4
|
Wang G, Dang G, Xu S, Liu J, Su H, Liang J, Huang W, Wang Y, Yu K. Aliikangiella coralliicola sp. nov., a bacterium isolated from coral Porites lutea, and proposal of Pleioneaceae fam. nov. to accommodate Pleionea and Aliikangiella. Int J Syst Evol Microbiol 2020; 70:5880-5887. [PMID: 33034551 DOI: 10.1099/ijsem.0.004489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, non-endospore-forming, motile, and aerobic bacterial strain, M105T, was isolated from coral Porites lutea, and was subjected to a polyphasic taxonomic study. Global alignment based on 16S rRNA gene sequences indicated that M105T shares the highest sequence identity of 94.5 % with Aliikangiella marina GYP-15T. The average nucleotide identity (ANI) and average amino acid identity (AAI) between M105T and A. marina GYP-15T was 69.8 and 71.6 %, respectively. On the basis of the results of phenotypic, chemotaxonomic, phylogenetic, phylogenomic, and comparative genomic analyses, it is concluded that M105T should represent a novel species in the genus Aliikangiella, for which the name Aliikangiella coralliicola sp. nov. is proposed. The type strain is M105T (=MCCC 1K03773T= KCTC 72442T). Furthermore, the family Kangiellaceae was classified into two families on the basis of phylogenetic, phylogenomic, polar lipid profile and motility variations. The novel family Pleioneaceae fam. nov. is proposed to accommodate the genera Aliikangiella and Pleionea.
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Ge Dang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Shuailiang Xu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Jianfeng Liu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Hongfei Su
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Jiayuan Liang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Wen Huang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
5
|
Luo Y, Lai Q, Yuan J, Huang Z. Pleionea sediminis sp. nov., isolated from coastal sediment and emendation of the description of the genus Pleionea. Int J Syst Evol Microbiol 2019; 69:3524-3528. [DOI: 10.1099/ijsem.0.003655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yuanrong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, , Xiamen University, Xiamen, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Jianjun Yuan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
| | - Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
| |
Collapse
|
6
|
Wang J, Lu Y, Nawaz MZ, Xu J. Comparative Genomics Reveals Evidence of Genome Reduction and High Extracellular Protein Degradation Potential in Kangiella. Front Microbiol 2018; 9:1224. [PMID: 29930545 PMCID: PMC6000758 DOI: 10.3389/fmicb.2018.01224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The genus Kangiella has recently been proposed within the family Kangiellaceae, belonging to order Oceanospirillales. Here, we report the complete genome sequence of a novel strain, Kangiella profundi FT102, which is the only Kangiella species isolated from a deep sea sediment sample. Furthermore, gaps in the publicly available genome scaffold of K. aquimarina DSM 16071 (NCBI Reference Sequence: NZ_ARFE00000000.1) were also filled using polymerase chain reaction (PCR) and Sanger sequencing. A comparative genomic analysis of five Kangiella and 18 non-Kangiella strains revealed insights into their metabolic potential. It was shown that low genomic redundancy and Kangiella-lineage-specific gene loss are the key reasons behind the genome reduction in Kangiella compared to that in any other free-living Oceanospirillales strain. The occurrence of relatively diverse and more frequent extracellular protease-coding genes along with the incomplete carbohydrate metabolic pathways in the genome suggests that Kangiella has high extracellular protein degradation potential. Growth of Kangiella strains has been observed using amino acids as the only carbon and nitrogen source and tends to increase with additional tryptone. Here, we propose that extracellular protein degradation and amino acid utilization are significant and prominent features of Kangiella. Our study provides more insight into the genomic traits and proteolytic metabolic capabilities of Kangiella.
Collapse
Affiliation(s)
- Jiahua Wang
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Lu
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Z Nawaz
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Wang G, Tang M, Wu H, Dai S, Li T, Chen C, He H, Fan J, Xiang W, Li X. Aliikangiella marina gen. nov., sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Kangiellaceae fam. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 2015; 65:4488-4494. [DOI: 10.1099/ijsem.0.000601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, non-spore-forming, long rod-shaped bacterium, designated strain GYP-15T, was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Phylogenetic analyses revealed that strain GYP-15T shared 90.6 % 16S rRNA gene sequence similarity with its closest relative, Kangiella aquimarina KCTC 12183T, and represents a distinct phylogenetic lineage in a robust clade consisting of GYP-15T and members of the genera Kangiella and Pleionea in the order Oceanospirillales. Chemotaxonomic and physiological characteristics, including major cellular fatty acids, NaCl tolerance and pattern of carbon source utilization, could also readily distinguish strain GYP-15T from all established genera and species. Thus, it is concluded that strain GYP-15T represents a novel species of a new genus, for which the name Aliikangiella marina gen. nov., sp. nov. is proposed. The type strain of Aliikangiella marina is GYP-15T ( = MCCC 1K01163T = KCTC 42667T). Based on phylogenetic results, 16S rRNA gene signature nucleotide pattern and some physiological characteristics, the three genera Kangiella, Pleionea and Aliikangiella are proposed to make up a novel family, Kangiellaceae fam. nov., in the order Oceanospirillales.
Collapse
Affiliation(s)
- Guanghua Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Mingxing Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huanlian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Shikun Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Tao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Chenghao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui He
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jiewei Fan
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Wenzhou Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|
8
|
Xu FD, Li XG, Xiao X, Xu J. Kangiella profundi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2015; 65:2315-2319. [PMID: 25870256 DOI: 10.1099/ijs.0.000257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study employing a polyphasic approach was carried out on strain FT102(T), which was isolated from a deep-sea sediment sample collected in the south-west Indian Ocean at a depth of 2784 m. The strain was Gram-stain-negative, non-motile, rod-shaped and non-spore-forming. It grew optimally at 37-42 °C, pH 6.5-8.5 and in the presence of 1-4% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences confirmed the separation of the novel strain from recognized members of the genus Kangiella that are available in public databases. Strain FT102(T) exhibited 95.5-98.6% 16S rRNA gene sequence similarity to the type strains of the eight recognized species of the genus Kangiella. The chemotaxonomically characteristic fatty acid iso-C15:0 and ubiquinone Q-8 were also detected. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G + C content of strain FT102(T) was 45.0 mol%. The mean DNA-DNA relatedness values between strain FT102(T) and the type strains of Kangiella aquimarina and Kangiella koreensis were 47.3% and 13.7%, respectively. The combined results of phylogenetic, physiological and chemotaxonomic studies indicated that strain FT102(T) was affiliated with the genus Kangiella but differed from the recognized species of the genus Kangiella. Therefore, strain FT102T represents a novel species of the genus Kangiella, for which the name Kangiella profundi sp. nov. is proposed. The type strain is FT102(T) ( = CGMCC 1.12959(T) = KCTC 42297(T) = JCM 30232(T)).
Collapse
Affiliation(s)
- Fang-di Xu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue-Gong Li
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Xu
- Institute of Oceanology, Shanghai Jiao Tong University, Shanghai 200240, PR China.,State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
9
|
Kim JH, Ward AC, Kim W. Kangiella chungangensis sp. nov. isolated from a marine sand. Antonie van Leeuwenhoek 2015; 107:1291-8. [PMID: 25750088 DOI: 10.1007/s10482-015-0423-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
A Gram-negative bacterium, designated CAU 1040(T), which was isolated from marine sand obtained from Jeju Island in South Korea, was characterized as an aerobic rod-shaped organism that that was non-motile, non-spore-forming and halophilic. The bacterium grew optimally at 37 °C, at pH 8, and in the presence of 2% (w/v) NaCl. The taxonomic classification of CAU 1040(T) was investigated using a polyphasic characterization approach. While phylogenetic analysis of the 16S rRNA gene sequence revealed that CAU 1040(T) belongs to the genus Kangiella, the strain exhibited only 94.4-95.4% sequence similarity to the previously described Kangiella species. Similar to other Kangiella species, Q-8 was the predominant ubiquionone and iso-C(15:0) was the major cellular fatty acid detected in strain CAU 1040(T). The predominant polar lipids identified were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The G+C content of the CAU 1040(T) genome was 45.3 mol%. The phylogenetic, physiological, biochemical and chemotaxonomic data obtained in this study indicate that strain CAU 1040(T) represents a novel species of the genus Kangiella, for which the name Kangiella chungangensis sp. nov. is hereby proposed. The type strain is CAU 1040(T) (KCTC 42299(T), NBRC 110728(T)).
Collapse
Affiliation(s)
- Jong-Hwa Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | | |
Collapse
|
10
|
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:263. [PMID: 24917856 PMCID: PMC4040508 DOI: 10.3389/fmicb.2014.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles within salt marsh benthic food web pathways. We used DNA stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall, 146 bacterial species were detected using SIP, of which only 12 lineages were shared between enriched and non-enriched communities. Abundant groups from the 13C-labeled community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon utilization in salt marsh sediments and will allow future studies to target specific lineages to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of the potential of salt marshes to store carbon.
Collapse
Affiliation(s)
- Lindsay E Darjany
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
11
|
Jean WD, Hsu CY, Huang SP, Chen JS, Lin S, Su MH, Shieh WY. Reclassification of
[Glaciecola] lipolytica
and [
Aestuariibacter] litoralis
in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov. and Aliiglaciecola litoralis comb. nov., respectively. Int J Syst Evol Microbiol 2013; 63:2859-2864. [DOI: 10.1099/ijs.0.045625-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following phylogenetic analysis based on 16S rRNA gene sequences, together with DNA G+C contents and differential chemotaxonomic and physiological characteristics, a new genus with the name Aliiglaciecola gen. nov. is proposed to more appropriately accommodate two recognized species of the genera
Glaciecola
and
Aestuariibacter
. Accordingly,
[Glaciecola] lipolytica
and [
Aestuariibacter] litoralis
should be reassigned to the novel genus as Aliiglaciecola lipolytica comb. nov. (type strain, E3T = JCM 15139T = CGMCC 1.7001T) and Aliiglaciecola litoralis comb. nov. (type strain, KMM 3894T = JCM 15896T = NRIC 0754T), respectively. Aliiglaciecola lipolytica is proposed as the type species of this new genus. Physiologically, the combined characteristics of positive reactions for nitrate reduction and growth at 4 °C and 36 °C distinguish the new genus from the genera
Aestuariibacter
and
Glaciecola
by one to three traits. Moreover, the new genus is also distinguished from the genus
Glaciecola
by the fatty acid profile and distinguished from the genus
Aestuariibacter
by the differences of major isoprenoid quinone (MK-7 vs Q-8) and DNA G+C content (40.8–43.0 mol% vs 48.0–54.0 mol%).
Collapse
Affiliation(s)
- Wen Dar Jean
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC
| | - Cheng Yu Hsu
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC
| | - Ssu-Po Huang
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC
| | - Jwo-Sheng Chen
- College of Health Care, China Medical University, No. 91, Shyue-Shyh Rd, Taichung, Taiwan, ROC
| | - Saulwood Lin
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC
| | - Mong-Huai Su
- Department of Forestry and Nature Conservation, Chinese Culture University, No. 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, Taiwan, ROC
| | - Wung Yang Shieh
- Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Fagervold SK, Urios L, Intertaglia L, Batailler N, Lebaron P, Suzuki MT. Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2013; 63:2700-2705. [DOI: 10.1099/ijs.0.045575-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, cream-pigmented, non-motile, non-spore-forming straight rod, strain MOLA115T, was isolated from a coastal water sample from the Mediterranean Sea. On the basis of phylogenetic analysis of the 16S rRNA gene sequences, strain MOLA115T was shown to belong to the
Gammaproteobacteria
, adjacent to members of the genera
Marinicella
,
Arenicella
and
Kangiella
, sharing less than 89 % 16S rRNA gene sequence similarity with strains of all recognized species within the
Gammaproteobacteria
. The only isoprenoid quinone was ubiquinone-8. Polar lipids in strain MOLA115T included phosphatidylethanolamine, an aminolipid, phosphatidylglycerol and an aminophospholipid. Fatty acid analysis revealed iso-C15 : 0 and iso-C17 : 1ω9c to be the dominant components. The DNA G+C content was 44.5 mol%. Based upon the phenotypic and phylogenetic data, we propose that strain MOLA115T should be considered to represent a novel species in a new genus, for which the name Pleionea mediterranea gen. nov., sp. nov. is proposed. The type strain of Pleionea mediterranea is MOLA115T ( = CIP 110343T = DSM 25350T).
Collapse
Affiliation(s)
- Sonja K. Fagervold
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, IPREM UMR 5254, Equipe Environnement et Microbiologie, IBEAS, F-64013 PAU, France
| | - Laurent Intertaglia
- CNRS, UMS 2348, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Nicole Batailler
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Philippe Lebaron
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Marcelino T. Suzuki
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| |
Collapse
|
13
|
Kangiella
sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013; 63:1001-1006. [DOI: 10.1099/ijs.0.040691-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus
Kangiella
and the cluster comprising
Kangiella
species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized
Kangiella
species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with
Kangiella geojedonensis
YCS-5T,
Kangiella japonica
JCM 16211T and
Kangiella taiwanensis
JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized
Kangiella
species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus
Kangiella
, for which the name
Kangiella
sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T = CCUG 62217T).
Collapse
|