1
|
Wei YH, Zhu HY, Wen Z, Guo LC, Bai M, Wang DQ, Huang W, Jiang LL, Kajadpai N, Srisuk N, Han PJ, Bai FY. Starmerella fangiana f.a. sp. nov., a new ascomycetous yeast species from Daqu-making environment and other sources. Int J Syst Evol Microbiol 2024; 74:006581. [PMID: 39565723 PMCID: PMC11578291 DOI: 10.1099/ijsem.0.006581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
In the survey of yeast diversity in high-temperature Daqu, which is a fermentation starter for Chinese sauce-flavoured Baijiu, six yeast strains representing one novel species of the genus Starmerella were isolated from samples of Daqu and surrounding environments collected in Zunyi city, Guizhou Province, China. Phylogenetic analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene indicate that these six strains are conspecific with three other strains isolated from flowers and duckweed collected in Samoa, India and Thailand. The representative strain QFC-8 of the new species differs from the closet species Starmerella caucasica resolved by the D1/D2 sequence analysis by 13 (3.1 %, 12 substitutions and 1 gap) and 40 (10.3 %, 9 substitutions and 31 gaps) mismatches in the D1/D2 domain and ITS region, respectively. The results suggest that the novel group represents an undescribed species in the genus Starmerella, for which the name Starmerella fangiana sp. nov. is proposed. The holotype strain is CGMCC 2.7773.
Collapse
Affiliation(s)
- Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhang Wen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang-Chen Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mei Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | | | - Wei Huang
- GuiZhou XiJiu Co., Ltd, Guizhou 564622, PR China
| | - Li-Li Jiang
- GuiZhou XiJiu Co., Ltd, Guizhou 564622, PR China
| | - Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University, Bangkok 10900, Thailand
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
3
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
4
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
5
|
De Graeve M, De Maeseneire SL, Roelants SLKW, Soetaert W. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res 2018; 18:5049474. [DOI: 10.1093/femsyr/foy072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
6
|
Claus S, Van Bogaert IN. Sophorolipid production by yeasts: a critical review of the literature and suggestions for future research. Appl Microbiol Biotechnol 2017; 101:7811-7821. [DOI: 10.1007/s00253-017-8519-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
7
|
Zhang CY, Liu XJ, Yi ZH, Ren YC, Li Y, Hui FL. Starmerella anomalae f.a., sp. nov., Starmerella asiatica f.a., sp. nov., Starmerella henanensis f.a., sp. nov. and Starmerella scarabaei f.a., sp. nov., four yeast species isolated from scarab beetles. Int J Syst Evol Microbiol 2017; 67:1600-1606. [DOI: 10.1099/ijsem.0.001795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cai-Ying Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Xiao-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ze-Hao Yi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ying Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
8
|
Garay LA, Sitepu IR, Cajka T, Fiehn O, Cathcart E, Fry RW, Kanti A, Joko Nugroho A, Faulina SA, Stephanandra S, German JB, Boundy-Mills KL. Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales. J Ind Microbiol Biotechnol 2017; 44:923-936. [PMID: 28289902 DOI: 10.1007/s10295-017-1919-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
Abstract
Polyol esters of fatty acids (PEFA) are amphiphilic glycolipids produced by yeast that could play a role as natural, environmentally friendly biosurfactants. We recently reported discovery of a new PEFA-secreting yeast species, Rhodotorula babjevae, a basidiomycetous yeast to display this behavior, in addition to a few other Rhodotorula yeasts reported on the 1960s. Additional yeast species within the taxonomic order Sporidiobolales were screened for secreted glycolipid production. PEFA production equal or above 1 g L-1 were detected in 19 out of 65 strains of yeast screened, belonging to 6 out of 30 yeast species tested. Four of these species were not previously known to secrete glycolipids. These results significantly increase the number of yeast species known to secrete PEFA, holding promise for expanding knowledge of PEFA synthesis and secretion mechanisms, as well as setting the groundwork towards commercialization.
Collapse
Affiliation(s)
- Luis A Garay
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA, 95616-8598, USA
| | - Irnayuli R Sitepu
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA, 95616-8598, USA.,Biotechnology Department, Indonesia International Institute for Life Sciences (i3L), Jalan Pulo Mas Barat Kav. 88, Jakarta, 13210, Indonesia
| | - Tomas Cajka
- West Coast Metabolomics Center, Genome Center, University of California, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California, 451 Health Sciences Drive, Davis, CA, 95616, USA.,Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Erin Cathcart
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA, 95616-8598, USA
| | - Russell W Fry
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA, 95616-8598, USA
| | - Atit Kanti
- Research Center for Biology, Indonesian Institute of Sciences, Jalan Raya Jakarta - Bogor Km.46 Cibinong, Bogor, 16911, Indonesia
| | - Agustinus Joko Nugroho
- Research Center for Biology, Indonesian Institute of Sciences, Jalan Raya Jakarta - Bogor Km.46 Cibinong, Bogor, 16911, Indonesia
| | - Sarah Asih Faulina
- Research, Development and Innovation Agency, Ministry of Environment and Forestry, Jalan Gunung Batu No. 5, P.O. Box 165, Bogor, 16610, Indonesia
| | - Sira Stephanandra
- Research, Development and Innovation Agency, Ministry of Environment and Forestry, Jalan Gunung Batu No. 5, P.O. Box 165, Bogor, 16610, Indonesia
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kyria L Boundy-Mills
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California, One Shields Ave, Davis, CA, 95616-8598, USA.
| |
Collapse
|
9
|
Alimadadi N, Soudi MR, Wang SA, Wang QM, Talebpour Z, Bai FY. Starmerella orientalis f.a., sp. nov., an ascomycetous yeast species isolated from flowers. Int J Syst Evol Microbiol 2016; 66:1476-1481. [DOI: 10.1099/ijsem.0.000905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nayyereh Alimadadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shi-An Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zahra Talebpour
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
10
|
Sipiczki M. Starmerella caucasica sp. nov., a novel anamorphic yeast species isolated from flowers in the Caucasus. J GEN APPL MICROBIOL 2013; 59:67-73. [DOI: 10.2323/jgam.59.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|