1
|
Veloso M, Waldisperg A, Arros P, Berríos-Pastén C, Acosta J, Colque H, Varas MA, Allende ML, Orellana LH, Marcoleta AE. Diversity, Taxonomic Novelty, and Encoded Functions of Salar de Ascotán Microbiota, as Revealed by Metagenome-Assembled Genomes. Microorganisms 2023; 11:2819. [PMID: 38004830 PMCID: PMC10673233 DOI: 10.3390/microorganisms11112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Salar de Ascotán is a high-altitude arsenic-rich salt flat exposed to high ultraviolet radiation in the Atacama Desert, Chile. It hosts unique endemic flora and fauna and is an essential habitat for migratory birds, making it an important site for conservation and protection. However, there is limited information on the resident microbiota's diversity, genomic features, metabolic potential, and molecular mechanisms that enable it to thrive in this extreme environment. We used long- and short-read metagenomics to investigate the microbial communities in Ascotán's water, sediment, and soil. Bacteria predominated, mainly Pseudomonadota, Acidobacteriota, and Bacteroidota, with a remarkable diversity of archaea in the soil. Following hybrid assembly, we recovered high-quality bacterial (101) and archaeal (6) metagenome-assembled genomes (MAGs), including representatives of two putative novel families of Patescibacteria and Pseudomonadota and two novel orders from the archaeal classes Halobacteriota and Thermoplasmata. We found different metabolic capabilities across distinct lineages and a widespread presence of genes related to stress response, DNA repair, and resistance to arsenic and other metals. These results highlight the remarkable diversity and taxonomic novelty of the Salar de Ascotán microbiota and its rich functional repertoire, making it able to resist different harsh conditions. The highly complete MAGs described here could serve future studies and bioprospection efforts focused on salt flat extremophiles, and contribute to enriching databases with microbial genome data from underrepresented regions of our planet.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Angie Waldisperg
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Joaquín Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Hazajem Colque
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| | - Macarena A. Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Miguel L. Allende
- Millenium Institute Center for Genome Regulation, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Luis H. Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany;
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile; (M.V.); (A.W.); (P.A.); (C.B.-P.); (J.A.); (H.C.); (M.A.V.)
| |
Collapse
|
2
|
Bourhane Z, Cagnon C, Castañeda C, Rodríguez-Ochoa R, Álvaro-Fuentes J, Cravo-Laureau C, Duran R. Vertical organization of microbial communities in Salineta hypersaline wetland, Spain. Front Microbiol 2023; 14:869907. [PMID: 36778872 PMCID: PMC9911865 DOI: 10.3389/fmicb.2023.869907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rafael Rodríguez-Ochoa
- Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida, Lleida, Spain
| | | | | | - Robert Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
3
|
Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
Collapse
|
4
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
5
|
Rettberg P, Antunes A, Brucato J, Cabezas P, Collins G, Haddaji A, Kminek G, Leuko S, McKenna-Lawlor S, Moissl-Eichinger C, Fellous JL, Olsson-Francis K, Pearce D, Rabbow E, Royle S, Saunders M, Sephton M, Spry A, Walter N, Wimmer Schweingruber R, Treuet JC. Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know? ASTROBIOLOGY 2019; 19:951-974. [PMID: 30762429 PMCID: PMC6767865 DOI: 10.1089/ast.2018.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established. For missions to the icy moons in the outer Solar System, Europa and Enceladus, the planetary protection requirements are so far based on a probabilistic approach and a conservative estimate of poorly known parameters. One objective of the European Commission-funded project, Planetary Protection of Outer Solar System, was to assess the existing planetary protection approach, to identify inherent knowledge gaps, and to recommend scientific investigations necessary to update the requirements for missions to the icy moons.
Collapse
Affiliation(s)
- Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
- Address correspondence to: Petra Rettberg, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, 51147 Köln, Germany
| | - André Antunes
- GEMM—Group for Extreme and Marine Microbiology, Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - John Brucato
- Department of Physics and Astronomy, Astrophysical Observatory of Arcetri, National Institute for Astrophysics (INAF), Florence, Italy
| | - Patricia Cabezas
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Geoffrey Collins
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Alissa Haddaji
- Committee on Space Research (COSPAR), Montpellier, France
| | - Gerhard Kminek
- Committee on Space Research (COSPAR), Montpellier, France
| | - Stefan Leuko
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | | | | | - Jean-Louis Fellous
- Department of Physics and Astronomy, Wheaton College, Massachusetts, Norton, Massachusetts
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering & Mathematics, School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - David Pearce
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Elke Rabbow
- Research Group Astrobiology, Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Samuel Royle
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Mark Saunders
- Independent Consultant for the US National Academies of Sciences (NAS), Washington, District of Columbia
| | - Mark Sephton
- Faculty of Engineering, Department of Earth Science & Engineering, Imperial College, London, United Kingdom
| | - Andy Spry
- Carl Sagan Center, SETI, Mountain View, California
| | - Nicolas Walter
- Science Connect–European Science Foundation (ESF), Strasbourg, France
| | - Robert Wimmer Schweingruber
- Institut für Experimentelle und Angewandte Physik, Abteilung Extraterrestrische Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | |
Collapse
|
6
|
Lipus D, Roy D, Khan E, Ross D, Vikram A, Gulliver D, Hammack R, Bibby K. Microbial communities in Bakken region produced water. FEMS Microbiol Lett 2018; 365:4982779. [DOI: 10.1093/femsle/fny107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/20/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniel Lipus
- Department of Unconventional Resources, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Rd, Pittsburgh, PA 15236-0940, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
- Department of Civil and Environmental Engineering, University of Pittsburgh, 742 Benedum Hall, 3700 O’Hara St., Pittsburgh, PA 15201, USA
| | - Dhritikshama Roy
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108-6050, USA
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Daniel Ross
- Department of Unconventional Resources, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Rd, Pittsburgh, PA 15236-0940, USA
- AECOM, 707 Grant Street, Pittsburgh, PA, 15219, USA
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, 742 Benedum Hall, 3700 O’Hara St., Pittsburgh, PA 15201, USA
| | - Djuna Gulliver
- Department of Unconventional Resources, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Rd, Pittsburgh, PA 15236-0940, USA
| | - Richard Hammack
- Geosciences Division, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Rd, Pittsburgh, PA 15236-0940, USA
| | - Kyle Bibby
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
- Department of Civil and Environmental Engineering, University of Pittsburgh, 742 Benedum Hall, 3700 O’Hara St., Pittsburgh, PA 15201, USA
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 171 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Cuellar-Gempeler C, Leibold MA. Multiple colonist pools shape fiddler crab-associated bacterial communities. THE ISME JOURNAL 2018; 12:825-837. [PMID: 29362507 PMCID: PMC5864236 DOI: 10.1038/s41396-017-0014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023]
Abstract
Colonization is a key component of community assembly because it continuously contributes new species that can potentially establish and adds individuals to established populations in local communities. Colonization is determined by the regional species pool, which is typically viewed as stable at ecological time scales. Yet, many natural communities including plants, birds and microbes, are exposed to several distinct and dynamic sources of colonists and how multiple colonist pools interact to shape local communities remains unclear. Using a 16S rRNA amplicon survey, we profiled bacteria within surface, subsurface and burrow sediments and assessed their role as colonist pools for fiddler crab-associated bacteria. We found significant differences in composition among sediment types, driven by halophilic taxa in the surface, and different Desulfobacteraceae taxa in the subsurface and burrow. Bacteria from burrow sediment colonized the crab carapace whereas gut bacterial communities were colonized by burrow and surface sediment bacteria. Despite distinct colonist pools influencing gut bacteria, variation in composition across gut samples did not lead to significant clusters. In contrast, carapace bacterial communities clustered in six distinct groups loosely associated with crab species. Our findings suggest that multiple colonist pools can influence local communities but factors explaining variation in community composition depend on local habitats. Recognizing multiple colonist pools expands our understanding of the interaction between regional and local processes driving community structure and diversity.
Collapse
Affiliation(s)
- Catalina Cuellar-Gempeler
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA.
| | - Mathew A Leibold
- Section of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Mora-Ruiz MDR, Cifuentes A, Font-Verdera F, Pérez-Fernández C, Farias ME, González B, Orfila A, Rosselló-Móra R. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Syst Appl Microbiol 2017; 41:139-150. [PMID: 29352612 DOI: 10.1016/j.syapm.2017.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023]
Abstract
Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms.
Collapse
Affiliation(s)
- M Del R Mora-Ruiz
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain.
| | - A Cifuentes
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - F Font-Verdera
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - C Pérez-Fernández
- Environmental Microbiology Laboratory, Puerto Rico University, Rio Piedras campus, Puerto Rico
| | - M E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - B González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez - Center of Applied Ecology and Sustainability, Santiago, Chile
| | - A Orfila
- Marine Technology and Operational Oceanography Department, IMEDEA (CSIC-UIB), Esporles, Spain
| | - R Rosselló-Móra
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| |
Collapse
|
9
|
Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Appl Environ Microbiol 2017; 83:AEM.02659-16. [PMID: 28159795 DOI: 10.1128/aem.02659-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.IMPORTANCE There are an estimated 15,000 unconventional gas wells in the Marcellus Shale region, each generating up to 8,000 liters of hypersaline produced water per day throughout its lifetime (K. Gregory, R. Vidic, and D. Dzombak, Elements 7:181-186, 2011, https://doi.org/10.2113/gselements.7.3.181; J. Arthur, B. Bohm, and M. Layne, Gulf Coast Assoc Geol Soc Trans 59:49-59, 2009; https://www.marcellusgas.org/index.php). Microbial activity in produced waters could lead to issues with corrosion, fouling, and souring, potentially interfering with hydraulic fracturing operations. Previous studies have found microorganisms contributing to corrosion, fouling, and souring to be abundant across produced water samples from hydraulically fractured wells; however, these findings were based on a limited number of samples and well sites. In this study, we investigated the microbial community structure in produced water samples from 42 unconventional Marcellus Shale wells, confirming the dominance of the genus Halanaerobium in produced water and its metabolic potential for acid and sulfide production and biofilm formation.
Collapse
|
10
|
Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 2016; 32:135. [PMID: 27344438 DOI: 10.1007/s11274-016-2081-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.
Collapse
|
11
|
Aszalós JM, Krett G, Anda D, Márialigeti K, Nagy B, Borsodi AK. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes. Extremophiles 2016; 20:603-20. [PMID: 27315168 DOI: 10.1007/s00792-016-0849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Collapse
Affiliation(s)
- Júlia Margit Aszalós
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Pázmány P. sétány 1/C, 1117, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
12
|
Gales G, Tsesmetzis N, Neria I, Alazard D, Coulon S, Lomans BP, Morin D, Ollivier B, Borgomano J, Joulian C. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir. Sci Rep 2016; 6:22960. [PMID: 26965360 PMCID: PMC4786803 DOI: 10.1038/srep22960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/19/2016] [Indexed: 11/16/2022] Open
Abstract
Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.
Collapse
Affiliation(s)
- Grégoire Gales
- Aix-Marseille Université, CEREGE, Centre St Charles, Case 67, 3 Place Victor Hugo, 13331 Marseille, France.,Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Nicolas Tsesmetzis
- Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston, Texas 77082, USA
| | - Isabel Neria
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Didier Alazard
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Stéphanie Coulon
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| | - Bart P Lomans
- Emerging Technologies - Subsurface, Projects &Technologies, Shell Global Solutions International B.V., Kessler Park 1, 2288 GS Rijswijk, The Netherlands
| | - Dominique Morin
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| | - Bernard Ollivier
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Jean Borgomano
- Aix-Marseille Université, CEREGE, Centre St Charles, Case 67, 3 Place Victor Hugo, 13331 Marseille, France
| | - Catherine Joulian
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| |
Collapse
|
13
|
Kim MS, Park EJ. Bacterial Communities of Traditional Salted and Fermented Seafoods from Jeju Island of Korea Using 16S rRNA Gene Clone Library Analysis. J Food Sci 2014; 79:M927-34. [DOI: 10.1111/1750-3841.12431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Min-Soo Kim
- Dept. of Life and Nanopharmaceutical Sciences and Dept. of Biology; Kyung Hee Univ; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| | - Eun-Jin Park
- Dept. of Food Bioengineering; Jeju Natl. Univ; Jeju 690-756 Republic of Korea
| |
Collapse
|