1
|
Yu SS, Zhu AN, Che HY, Song WW. Molecular Identification of ' Candidatus Phytoplasma malaysianum'-Related Strains Associated with Areca catechu Palm Yellow Leaf Disease and Phylogenetic Diversity of the Phytoplasmas Within the 16SrXXXII Group. PLANT DISEASE 2024; 108:1331-1343. [PMID: 37953232 DOI: 10.1094/pdis-11-23-2275-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Areca catechu palm is an important cash plant in Hainan Island of China and also in the tropical regions of the world. A. catechu palm yellow leaf (AcYL) disease caused by phytoplasmas is a devastating disease for plant production. In the study, the phytoplasmas associated with the AcYL disease were identified and characterized based on their conserved genes, and genetic variation and phylogenetic relationship of the phytoplasma strains in the 16SrXXXII group were demonstrated. The results indicated that A. catechu palm plants showing yellow leaf symptoms were infected by 'Candidatus Phytoplasma malaysianum'-related strains belonging to the 16SrXXXII-D subgroup. BLAST and multiple sequence alignment analysis based on 16S rRNA and secA genes showed that the AcYL phytoplasmas shared 100% sequence identity and 100% homology with the 'Ca. P. malaysianum'-related strains. Phylogenetic analysis indicated that the AcYL phytoplasmas and 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group clustered into one clade with a 100% bootstrap value. Based on computer-simulated digestions, six kinds of restriction fragment length polymorphism patterns within the 16SrXXXII group were obtained, and a novel subgroup in the 16Sr group was recommended to propose and describe the relevant strains in this 16Sr subgroup. To our knowledge, this is the first study to report that A. catechu palm showing yellow leaf symptoms was infected by 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group. A novel 16Sr subgroup, 16SrXXXII-F, was proposed based on the systematical analysis of genetic variation of all phytoplasmas within the 16SrXXXII group. The findings of this study will support references for monitoring the epidemiology and developing effective prevention strategies for AcYL disease.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| | - An-Na Zhu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
- College of Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Wei-Wei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| |
Collapse
|
2
|
Kirdat K, Tiwarekar B, Sathe S, Yadav A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front Microbiol 2023; 14:1123783. [PMID: 36970684 PMCID: PMC10033645 DOI: 10.3389/fmicb.2023.1123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Phytoplasma taxonomy has been a topic of discussion for the last two and half decades. Since the Japanese scientists discovered the phytoplasma bodies in 1967, the phytoplasma taxonomy was limited to disease symptomology for a long time. The advances in DNA-based markers and sequencing improved phytoplasma classification. In 2004, the International Research Programme on Comparative Mycoplasmology (IRPCM)- Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group provided the description of the provisional genus ‘Candidatus Phytoplasma’ with guidelines to describe the new provisional phytoplasma species. The unintentional consequences of these guidelines led to the description of many phytoplasma species where species characterization was restricted to a partial sequence of the 16S rRNA gene alone. Additionally, the lack of a complete set of housekeeping gene sequences or genome sequences, as well as the heterogeneity among closely related phytoplasmas limited the development of a comprehensive Multi-Locus Sequence Typing (MLST) system. To address these issues, researchers tried deducing the definition of phytoplasma species using phytoplasmas genome sequences and the average nucleotide identity (ANI). In another attempts, a new phytoplasma species were described based on the Overall Genome relatedness Values (OGRI) values fetched from the genome sequences. These studies align with the attempts to standardize the classification and nomenclature of ‘Candidatus’ bacteria. With a brief historical account of phytoplasma taxonomy and recent developments, this review highlights the current issues and provides recommendations for a comprehensive system for phytoplasma taxonomy until phytoplasma retains ‘Candidatus’ status.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Bhavesh Tiwarekar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Amit Yadav
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- *Correspondence: Amit Yadav, ,
| |
Collapse
|
3
|
Lee GW, Han SS. Molecular Detection of Phytoplasmas of the 16SrⅠ and 16SrXXXⅡ Groups in Elaeocarpus sylvestris Trees with Decline Disease in Jeju Island, South Korea. THE PLANT PATHOLOGY JOURNAL 2023; 39:149-157. [PMID: 36760057 PMCID: PMC9929163 DOI: 10.5423/ppj.oa.07.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Phytoplasmas were discovered in diseased Elaeocarpus sylvestris trees growing on Jeju Island that showed symptoms of yellowing and darkening in the leaves. Leaf samples from 14 symptomatic plants in Jeju-si and Seogwipo-si were collected and phytoplasma 16S rRNA was successfully amplified by nested polymerase chain reaction using universal primers. The sequence analysis detected two phytoplasmas, which showed 99.5% identity to 'Candidatus Phytoplasma asteris' and 'Ca. P. malaysianum' affiliated to 16SrI and 16SrXXXII groups, respectively. Through polymerase chain reaction-restriction fragment length polymorphism (RFLP) analyses using the AfaI (RsaI) restriction enzyme, the presence of two phytoplasmas strains as well as cases of mixed infection of these strains was detected. In a virtual RFLP analysis with 17 restriction enzymes, the 16S rRNA sequence of the 'Ca. P. asteris' strain was found to match the pattern of the 16SrI-B subgroup. In addition, the phytoplasmas in the mixed-infection cases could be distinguished using specific primer sets. In conclusion, this study confirmed mixed infection of two phytoplasmas in one E. sylvestris plant, and also the presence of two phytoplasmas (of the 16SrⅠ and 16SrXXXⅡ groups) in Jeju Island (Republic of Korea).
Collapse
Affiliation(s)
| | - Sang-Sub Han
- Corresponding author: Phone) +82-63-270-2588, FAX) +82-63-270-2592, E-mail)
| |
Collapse
|
4
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
5
|
Bertaccini A. Plants and Phytoplasmas: When Bacteria Modify Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111425. [PMID: 35684198 PMCID: PMC9182842 DOI: 10.3390/plants11111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Plant pathogen presence is very dangerous for agricultural ecosystems and causes huge economic losses. Phytoplasmas are insect-transmitted wall-less bacteria living in plants, only in the phloem tissues and in the emolymph of their insect vectors. They are able to manipulate several metabolic pathways of their hosts, very often without impairing their life. The molecular diversity described (49 'Candidatus Phytoplasma' species and about 300 ribosomal subgroups) is only in some cases related to their associated symptomatology. As for the other plant pathogens, it is necessary to verify their identity and recognize the symptoms associated with their presence to appropriately manage the diseases. However, the never-ending mechanism of patho-adaptation and the copresence of other pathogens makes this management difficult. Reducing the huge impact of phytoplasma-associated diseases in all the main crops and wild species is, however, relevant, in order to reduce their effects that are jeopardizing plant biodiversity.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
6
|
Bertaccini A, Arocha-Rosete Y, Contaldo N, Duduk B, Fiore N, Montano HG, Kube M, Kuo CH, Martini M, Oshima K, Quaglino F, Schneider B, Wei W, Zamorano A. Revision of the ' Candidatus Phytoplasma' species description guidelines. Int J Syst Evol Microbiol 2022; 72. [PMID: 35471141 DOI: 10.1099/ijsem.0.005353] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus 'Candidatus Phytoplasma' was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus 'Ca. Phytoplasma', the proposed guidelines were revised and clarified to accommodate those 'Ca. Phytoplasma' species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same 'Ca. Phytoplasma' species should be considered related strains to that 'Ca. Phytoplasma' species. The guidelines herein, keep the original published reference strains. However, to improve 'Ca. Phytoplasma' species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of 'Ca. Phytoplasma' species and alternative reference strains described are reported. For new 'Ca. Phytoplasma' species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published 'Candidatus Phytoplasma' species, including 'Ca. P. cocostanzaniae' and 'Ca. P. palmae' described in this manuscript.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | - Nicola Fiore
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Chile, Santiago, Chile
| | - Helena Guglielmi Montano
- Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Department of Clinical Plant Science, Hosei University, Japan
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Bernd Schneider
- Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD, USA
| | - Alan Zamorano
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Huang CT, Cho ST, Lin YC, Tan CM, Chiu YC, Yang JY, Kuo CH. Comparative Genome Analysis of ‘Candidatus Phytoplasma luffae’ Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Front Microbiol 2022; 13:773608. [PMID: 35300489 PMCID: PMC8923039 DOI: 10.3389/fmicb.2022.773608] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Phytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of ‘Candidatus Phytoplasma luffae’ strain NCHU2019 that is associated with witches’ broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has a remarkably repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for subfunctionalization or neofunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.
Collapse
Affiliation(s)
- Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Choon-Meng Tan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Chiu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Jun-Yi Yang,
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Chih-Horng Kuo,
| |
Collapse
|
8
|
Detection of blueberry stunt phytoplasma in Eastern Canada using cpn60-based molecular diagnostic assays. Sci Rep 2021; 11:22118. [PMID: 34764366 PMCID: PMC8586236 DOI: 10.1038/s41598-021-01439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Blueberry stunt phytoplasma (BBSP; ‘Candidatus Phytoplasma asteris’) is an insect-vectored plant pathogen that causes severe yield losses in blueberry (Vaccinium corymbosum), which is the most valuable fruit crop in Canada. Rapid, field-based diagnostic assays are desirable tools for the control of BBSP, as part of an integrated, proactive approach to production management termed biovigilance. We designed and validated a chaperonin-60 (cpn60)-targeted LAMP assay for detection of BBSP, providing a rapid, low cost, field-deployable diagnostic option. Our validation demonstrates that the assay is reproducible, with high analytical specificity and improved sensitivity when compared with 16S rRNA nested PCR. We applied the validated LAMP assay to nearly 2000 blueberry samples from Québec and Nova Scotia over three growing seasons (2016–2018). Our surveys revealed that BBSP is present in most sites across both provinces, though detection of the pathogen in individual plants varied in different tissues across sampling dates and across years, and evidence of spread between plants was limited. To quantify pathogen load in select plants, we designed additional qPCR and ddPCR assays, also based on cpn60. We found that pathogen load fluctuates in individual plants, both within and between growing seasons. Finally, we designed an interactive map to visualize the results of our surveys. These results provide a validated diagnostic assay that can be used as part of a biovigilance strategy for detecting and controlling infections caused by BBSP.
Collapse
|
9
|
Zhao Y, Wei W, Davis RE, Lee IM, Bottner-Parker KD. The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ' Candidatus Phytoplasma tritici'. Int J Syst Evol Microbiol 2021; 71. [PMID: 33464199 DOI: 10.1099/ijsem.0.004604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the 'Candidatus Phytoplasma asteris' reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector (Psammotettix striatus) but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from 'Ca. P. asteris'. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with 'Ca. P. asteris'. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, 'Candidatus Phytoplasma tritici'.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Kristi D Bottner-Parker
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
Yu SS, Tang Q, Wu Y, Lin MX, Zhao RL, Song WW, Qin W. First report of phytoplasma belongs to 16SrXXXII group associated with witches'-broom symptoms in Trema tomentosa in China. PLANT DISEASE 2020; 105:1191-1191. [PMID: 33245259 DOI: 10.1094/pdis-10-20-2237-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trema tomentosa (Roxb.) Hara belonging to Ulmaceae displayed abnormal symptoms including witches'-broom, internode shortening, leaf chlorosis and leaflet that affected seriously their growth causing financial loss and ecological damage in China. During August through September 2020, these plants with the symptoms were first found and collected in Dingan and Qinghai counties of Hainan province, China. PCR were performed using the primers R16mF2/R16mR1 and secAfor1/secArev3 specific for phytoplasma 16S rRNA and secA gene fragments. The two gene fragments of the DNA extracted from the four disease samples were identical, with length of 1303 bp 16S rRNA and 587 bp secA gene fragments. The phytoplasma strain was named as Trema tomentosa witches'-broom (TtWB) phytoplasma, TtWB-hn strain. Phylogenetic and computer-simulated RFLP analyses based on the nearly full-length 16S rRNA gene sequence indicated that the TtWB phytoplasma strain is more closely related to the 16SrXXXII-A subgroup than to the other subgroups within 16SrXXXII group. It may represent a new subgroup, designed as 16SrXXXII-D subgroup, which is distinct from the other phytoplasma subgroups within the 16SrXXXII group. To our knowledge, this is the first report showing the occurrence of the phytoplasma strain belongs to 16SrXXXII-D subgroup associated with witches'-broom disease in Trema tomentosa in China. Genetic analysis indicated that the TtWB strain was closely related to the phytoplasma strains infecting periwinkle, oil palm, coconut palm in Malyasian, Camptotheca acuminate in Yunnan province of China and Elaeocarpus zollingeri in Japan.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Plant protection center, Coconut Research Institute, Wenqing Avenue 496, Wenchang 571339, Hainan province, People's Republic of China, Wenchang, China, 571339;
| | - Qinghua Tang
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Plant protection center, Wenchang, China;
| | - Yuan Wu
- Hainan Duoyan Arecanut Industry Development Company Limited, Qionghai, China;
| | - Ming-Xing Lin
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Plant protection center, Wenchang, China;
| | - Rui-Ling Zhao
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Plant protection center, Wenchang, China;
| | - Wei-Wei Song
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Plant protection center, Wenchang, China;
| | | |
Collapse
|
11
|
Ramos Hernández E, Lesher Gordillo JM, Oropeza Salín C, Ortiz García CF, Magaña Alejandro MA, Sánchez Soto S, García Estrada Y. Detection and Identification of Phytoplasmas in the 16SrIV-A, -B, and -D Subgroups in Palms in Tabasco, Mexico. PLANT DISEASE 2020; 104:2606-2612. [PMID: 32813613 DOI: 10.1094/pdis-09-18-1488-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The 16SrIV-A phytoplasmas are associated with the devastating disease lethal yellowing (LY) of palms. In Tabasco (Mexico), the death of Cocos nucifera, Adonidia merrillii, and Attalea butyracea palms have been suspected to be associated with LY based on symptomatology. Samples from the trunk of both symptomatic and nonsymptomatic palms were collected in three different environments: two species of palms within a rural zone and the other within an urban zone. DNA was extracted to perform a nested PCR with phytoplasma primers P1/P7-LY16SF/R16R2. A 1,345-bp fragment was amplified from the DNA extracted from each of the 29 LY-symptomatic palms sampled. Phytoplasma identification was achieved by amplicon sequencing and virtual restriction fragment length polymorphism analyses. Three 16SrIV phytoplasma subgroups were detected: 16SrIV-A in C. nucifera, 16SrIV-B in A. merrillii, and 16SrIV-D in C. nucifera, A. merrillii, and A. butyracea. Phylogenetic analysis showed also that the three phytoplasma strains found in the palm species clustered with phytoplasmas reported in the literature in the three subgroups identified. This is the first report of phytoplasmas associated with these palm species in Tabasco.
Collapse
Affiliation(s)
- Eder Ramos Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Huimanguillo, 86400, Huimanguillo, Tabasco, México
| | - Julia M Lesher Gordillo
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, 86150, Villahermosa, Tabasco, México
| | - Carlos Oropeza Salín
- Centro de Investigación Científica de Yucatán A.C., 97205, Chuburná de Hidalgo, Mérida, Yucatán, México
| | | | - Miguel A Magaña Alejandro
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, 86150, Villahermosa, Tabasco, México
| | | | | |
Collapse
|
12
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
13
|
Miyazaki A, Shigaki T, Koinuma H, Iwabuchi N, Rauka GB, Kembu A, Saul J, Watanabe K, Nijo T, Maejima K, Yamaji Y, Namba S. ‘Candidatus Phytoplasma noviguineense’, a novel taxon associated with Bogia coconut syndrome and banana wilt disease on the island of New Guinea. Int J Syst Evol Microbiol 2018; 68:170-175. [DOI: 10.1099/ijsem.0.002480] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Akio Miyazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiro Shigaki
- National Agricultural Research Institute, PO Box 1639, Lae, Morobe Province 411, Papua New Guinea
| | - Hiroaki Koinuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nozomu Iwabuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Gou Bue Rauka
- National Agricultural Research Institute, PO Box 1639, Lae, Morobe Province 411, Papua New Guinea
| | - Alfred Kembu
- Cocoa Coconut Institute Stewart Research Station, PO Box 642, Madang, Madang Province, Papua New Guinea
| | - Josephine Saul
- Cocoa Coconut Institute Stewart Research Station, PO Box 642, Madang, Madang Province, Papua New Guinea
| | - Kiyoto Watanabe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takamichi Nijo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W, Harrison NA, Kong L, Kadir J, Tan YH, Zhao Y. 'Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017; 67:3765-3772. [PMID: 28905707 DOI: 10.1099/ijsem.0.002187] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Landscape-grown foxtail palm (Wodyetia bifurcata A. K. Irvine) trees displaying symptoms of severe foliar chlorosis, stunting, general decline and mortality reminiscent of coconut yellow decline disease were observed in Bangi, Malaysia, during 2012. DNA samples from foliage tissues of 15 symptomatic palms were analysed by employing a nested PCR assay primed by phytoplasma universal ribosomal RNA operon primer pairs, P1/P7 followed by R16F2n/R2. The assay yielded amplicons of a single band of 1.25 kb from DNA samples of 11 symptomatic palms. Results from cloning and sequence analysis of the PCR-amplified 16S rRNA gene segments revealed that, in three palms, three mutually distinct phytoplasmas comprising strains related to 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma cynodontis', as well as a novel phytoplasma, were present as triple infections. The 16S rRNA gene sequence derived from the novel phytoplasma shared less than 96 % nucleotide sequence identity with that of each previously describedspecies of the provisional genus 'Ca. Phytoplasma', justifying its recognition as the reference strain of a new taxon, 'Candidatus Phytoplasma wodyetiae'. Virtual RFLP profiles of the R16F2n/R2 portion of the 16S rRNA gene and the pattern similarity coefficient value (0.74) supported the delineation of 'Ca. Phytoplasma wodyetiae' as the sole representative subgroup A member of a new phytoplasma ribosomal group, 16SrXXXVI.
Collapse
Affiliation(s)
- Neda Naderali
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Naghmeh Nejat
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,School of Science, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia.,Plant Protection Department, Universiti Putra Malaysia, 43400, Malaysia
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Nigel A Harrison
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL 33314, USA
| | - LihLing Kong
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Jugah Kadir
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yee-How Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Malaysia
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
Fernández FD, Meneguzzi NG, Conci LR. Identification of three novel subgroups within the X-disease group phytoplasma associated with strawberry redness disease. Int J Syst Evol Microbiol 2017; 67:753-758. [DOI: 10.1099/ijsem.0.001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Franco D Fernández
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA. Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Natalia G Meneguzzi
- Estación Experimental Agropecuaria Famaillá-INTA, Ruta Prov. 301 km 32 (4132), Famaillá, Tucumán, Argentina
| | - Luis R Conci
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA. Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina
| |
Collapse
|
16
|
Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR. Description of ‘Candidatus Phytoplasma meliae’, a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. Int J Syst Evol Microbiol 2016; 66:5244-5251. [DOI: 10.1099/ijsem.0.001503] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Franco Daniel Fernández
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba, Argentina
| | - Ernestina Galdeano
- Instituto de Botánica del Nordeste, (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131 (3400), Corrientes, Argentina
| | - Marcela Victoria Kornowski
- Estación Experimental Agropecuaria Montecarlo-INTA, Av. El Libertador 2472 (3384), Montecarlo, Argentina
| | - Joel Demián Arneodo
- Instituto de Microbiología y Zoología Agrícola (IMyZA), INTA, Nicolas Repetto y de los Reseros s/n (1686), Hurlingham, Argentina
| | - Luis Rogelio Conci
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba, Argentina
| |
Collapse
|
17
|
Gurr GM, Johnson AC, Ash GJ, Wilson BAL, Ero MM, Pilotti CA, Dewhurst CF, You MS. Coconut Lethal Yellowing Diseases: A Phytoplasma Threat to Palms of Global Economic and Social Significance. FRONTIERS IN PLANT SCIENCE 2016; 7:1521. [PMID: 27833616 PMCID: PMC5080360 DOI: 10.3389/fpls.2016.01521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/26/2016] [Indexed: 05/25/2023]
Abstract
The recent discovery of Bogia coconut syndrome in Papua New Guinea (PNG) is the first report of a lethal yellowing disease (LYD) in Oceania. Numerous outbreaks of LYDs of coconut have been recorded in the Caribbean and Africa since the late Nineteenth century and have caused the death of millions of palms across several continents during the Twentieth century. Despite the severity of economic losses, it was only in the 1970s that the causes of LYDs were identified as phytoplasmas, a group of insect-transmitted bacteria associated with diseases in many other economically important crop species. Since the development of polymerase chain reaction (PCR) technology, knowledge of LYDs epidemiology, ecology and vectors has grown rapidly. There is no economically viable treatment for LYDs and vector-based management is hampered by the fact that vectors have been positively identified in very few cases despite many attempted transmission trials. Some varieties and hybrids of coconut palm are known to be less susceptible to LYD but none are completely resistant. Optimal and current management of LYD is through strict quarantine, prompt detection and destruction of symptomatic palms, and replanting with less susceptible varieties or crop species. Advances in technology such as loop mediated isothermal amplification (LAMP) for detection and tracking of phytoplasma DNA in plants and insects, remote sensing for identifying symptomatic palms, and the advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based tools for gene editing and plant breeding are likely to allow rapid progress in taxonomy as well as understanding and managing LYD phytoplasma pathosystems.
Collapse
Affiliation(s)
- Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujain Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhou, China
- Graham Centre of Agricultural Innovation, Charles Sturt UniversityOrange, NSW, Australia
| | - Anne C. Johnson
- Graham Centre of Agricultural Innovation, Charles Sturt UniversityOrange, NSW, Australia
| | - Gavin J. Ash
- Research and Innovation Division, Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern QueenslandToowoomba, QLD, Australia
| | - Bree A. L. Wilson
- Research and Innovation Division, Centre for Crop Health, Institute for Agriculture and the Environment, University of Southern QueenslandToowoomba, QLD, Australia
| | - Mark M. Ero
- PNG Oil Palm Research AssociationKimbe, Papua New Guinea
| | | | - Charles F. Dewhurst
- Formerly affiliated with the PNG Oil Palm Research AssociationKimbe, Papua New Guinea
| | - Minsheng S. You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujain Agriculture and Forestry UniversityFuzhou, China
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
18
|
Pérez-López E, Olivier CY, Luna-Rodríguez M, Dumonceaux TJ. Phytoplasma classification and phylogeny based on in silico and in vitro RFLP analysis of cpn60 universal target sequences. Int J Syst Evol Microbiol 2016; 66:5600-5613. [PMID: 27667728 PMCID: PMC5244502 DOI: 10.1099/ijsem.0.001501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas are unculturable, phytopathogenic bacteria that cause economic losses worldwide. As unculturable micro-organisms, phytoplasma taxonomy has been based on the use of the 16S rRNA-encoding gene to establish 16Sr groups and subgroups based on the restriction fragment length polymorphism (RFLP) pattern resulting from the digestion of amplicon (in vitro) or sequence (in silico) with seventeen restriction enzymes. Problems such as heterogeneity of the ribosomal operon and the inability to differentiate closely related phytoplasma strains has motivated the search for additional markers capable of providing finer differentiation of phytoplasma strains. In this study we developed and validated a scheme to classify phytoplasmas based on the use of cpn60 universal target (cpn60 UT) sequences. Ninety-six cpn60 UT sequences from strains belonging to 19 16Sr subgroups were subjected to in silico RFLP using pDRAW32 software, resulting in 25 distinctive RFLP profiles. Based on these results we delineated cpn60 UT groups and subgroups, and established a threshold similarity coefficient for groups and subgroups classifying all the strains analysed in this study. The nucleotide identity among the reference strains, the correspondence between in vitro and in silico RFLP, and the phylogenetic relationships of phytoplasma strains based on cpn60 UT sequences are also discussed.
Collapse
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de Las Culturas Veracruzanas Xalapa, Veracruz, México
| | - Chrystel Y. Olivier
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Mauricio Luna-Rodríguez
- Laboratorio de Alta Tecnología de Xalapa - DGI, Universidad Veracruzana, Médicos 5, Unidad del Bosque Xalapa, Veracruz, México
| | - Tim J. Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Correspondence Tim J. Dumonceaux
| |
Collapse
|
19
|
Yang Y, Jiang L, Che H, Cao X, Luo D. Identification of a novel subgroup 16SrII-U phytoplasma associated with papaya little leaf disease. Int J Syst Evol Microbiol 2016; 66:3485-3491. [PMID: 27266888 DOI: 10.1099/ijsem.0.001221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papaya is an important fruit crop cultivated in tropical and subtropical regions. Papaya little leaf (PLL) disease was observed in China. The phytoplasma 16S rRNA gene was detected from symptomatic papaya trees via PCR using phytoplasma universal primers P1/P7 followed by R16F2n/R16R2. No amplification products were obtained from templates of asymptomatic papaya trees. These results indicated a direct association between phytoplasma infection and PLL disease. Comparative and phylogenetic analyses of 16S rRNA gene sequences indicated that the papaya-infecting phytoplasmas under study belonged to the peanut witches' broom phytoplasma group (16SrII). Genotyping through use of computer-simulated RFLP analysis of 16S rRNA genes and coefficients of RFLP pattern similarities (0.97) reveal that the PLL phytoplasma was placed in a new subgroup. In this article, we describe the molecular characterization of a new phytoplasma associated with PLL disease and propose that the PLL phytoplasma be considered as a novel subgroup, 16SrII-U.
Collapse
Affiliation(s)
- Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture; Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, PR China
| | - Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture; Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, PR China
| | - Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture; Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, PR China
| | - Xueren Cao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture; Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, PR China
| | - Daquan Luo
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture; Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, PR China
| |
Collapse
|
20
|
Zhao Y, Davis RE. Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int J Syst Evol Microbiol 2016; 66:2121-2123. [DOI: 10.1099/ijsem.0.000999] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center,ARS-USDA, Beltsville, MD 20705,USA
| | - Robert E. Davis
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center,ARS-USDA, Beltsville, MD 20705,USA
| |
Collapse
|
21
|
Šafárˇová D, Zemánek T, Válová P, Navrátil M. 'Candidatus Phytoplasma cirsii', a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. Int J Syst Evol Microbiol 2016; 66:1745-1753. [PMID: 26849880 DOI: 10.1099/ijsem.0.000937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Creeping thistle [Cirsium arvense (L.) Scop.] and dahlia (Dahlia sp.) plants showing typical symptoms of phytoplasma infection including yellowing, stunting, inflorescence and proliferation, were sampled; the presence of phytoplasma was confirmed by standard PCR using universal primers. RFLP analysis allowed classification of the detected phytoplasma strains CirYS, CirYS1 and DahlP within the 16SrXI group, the unique restriction profile F2nR2 fragment obtained in silico by iPhyClassifier indicated that they belong to the new 16SrXI-E subgroup. Genetic analysis of the 16S rRNA gene revealed that the studied strains shared less than 97.5% similarity with all of the previously described 'Candidatus Phytoplasma' species. The closest relatives are 'Candidatus Phytoplasma cynodontis' and 'Candidatus Phytoplasma oryzae' with 96.8% and 96.6% similarity. All strains studied bear three specific regions in the 16S rRNA gene, discriminating them from the other phytoplasma species. Phylogenetic analysis of the 16S rRNA and secA genes confirmed this specificity, as the creeping thistle and dahlia phytoplasma strains clustered in a distinguishable lineage group. The uniqueness of the genetic analysis agrees with the biological characterization of the studied phytoplasma strains, their host range, and geographical distribution. The strains only infect dicotyledonous plants in Europe, contrary to their closest relatives. Based on their unique properties, it could be concluded that the studied phytoplasma strains represent a discrete group that is proposed as a novel taxon 'Candidatus Phytoplasma cirsii', with strain CirYS as a reference strain.
Collapse
Affiliation(s)
- Dana Šafárˇová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Tomáš Zemánek
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Pavla Válová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
22
|
Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ. The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 2016; 66:492-513. [DOI: 10.1099/ijsem.0.000726] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de Las Culturas Veracruzanas, Xalapa, Veracruz, Mexico
| | - Mauricio Luna-Rodríguez
- DGI-LATEX, Universidad Veracruzana, Avenida de Las Culturas Veracruzanas, Xalapa, Veracruz, Mexico
| | - Chrystel Y. Olivier
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Tim J. Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Draft Genome Sequence of "Candidatus Phytoplasma pruni" Strain CX, a Plant-Pathogenic Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01117-15. [PMID: 26472824 PMCID: PMC4611676 DOI: 10.1128/genomea.01117-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
"Candidatus Phytoplasma pruni" strain CX, belonging to subgroup 16SrIII-A, is a plant-pathogenic bacterium causing economically important diseases in many fruit crops. Here, we report the draft genome sequence, which consists of 598,508 bases, with a G+C content of 27.21 mol%.
Collapse
|
24
|
Davis RE, Dally EL, Zhao Y, Lee IM, Wei W, Wolf TK, Beanland L, LeDoux DG, Johnson DA, Fiola JA, Walter-Peterson H, Dami I, Chien M. Unraveling the Etiology of North American Grapevine Yellows (NAGY): Novel NAGY Phytoplasma Sequevars Related to 'Candidatus Phytoplasma pruni'. PLANT DISEASE 2015; 99:1087-1097. [PMID: 30695940 DOI: 10.1094/pdis-11-14-1185-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
North American grapevine yellows (NAGY) disease has sometimes been attributed to infection of Vitis vinifera L. by Prunus X-disease phytoplasma ('Candidatus Phytoplasma pruni') but this attribution may not be fully adequate. In this study, phytoplasma strains related to 'Ca. Phytoplasma pruni' were found in NAGY-diseased grapevines in Maryland, Pennsylvania, Virginia, Ohio, Missouri, and New York State. Based on restriction fragment length polymorphism analysis of 16S ribosomal RNA gene (16S rDNA) sequences, the strains (termed NAGYIII strains) were classified in group 16SrIII (X-disease group) but they contained a recognition site for the restriction endonuclease MseI that is not present in the 16S rDNA of 'Ca. Phytoplasma pruni'. The 16S rDNA of the strains differed by three or four nucleotides from that of 'Ca. Phytoplasma pruni', indicating that they belonged to two novel 16S rDNA sequevars, designated NAGYIIIα and NAGYIIIβ. Both sequevars differed from 'Ca. Phytoplasma pruni' by a single base in each of three regions corresponding to species-unique (signature) sequences described for 'Ca. Phytoplasma pruni'. Phylogenetic analyses of 16S rRNA genes and SecY proteins, and single-nucleotide polymorphism analyses of secY and ribosomal protein genes, further distinguished the two grapevine sequevar lineages from one another and from 'Ca. Phytoplasma pruni'. The NAGYIIIα and NAGYIIIβ sequevars also differed from 'Ca. Phytoplasma pruni' in regions of the folded SecY protein that are predicted to be near or exposed at the outer surface of the phytoplasma membrane. No evidence indicated that diseased grapevines contained any phytoplasma strain conforming to 'Ca. Phytoplasma pruni' sensu stricto. Because the NAGYIII sequevars have not been reported in X-disease, a question is raised as to whether NAGYIII and Prunus X-disease are caused by different phytoplasma genotypes.
Collapse
Affiliation(s)
- Robert E Davis
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Ellen L Dally
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Wei Wei
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Tony K Wolf
- Alson H. Smith, Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester 22602
| | - LeAnn Beanland
- Alson H. Smith, Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester 22602
| | | | | | - Joseph A Fiola
- University of Maryland Extension, Western MD Research & Education Center, Keedysville 21756
| | - Hans Walter-Peterson
- Cornell Cooperative Extension, Cornell University College of Agriculture and Life Sciences, Penn Yan, NY 14527
| | - Imed Dami
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Mark Chien
- Penn State Cooperative Extension, College of Agricultural Sciences, Lancaster, PA 17601
| |
Collapse
|
25
|
Fernández FD, Meneguzzi NG, Guzmán FA, Kirschbaum DS, Conci VC, Nome CF, Conci LR. Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. Int J Syst Evol Microbiol 2015; 65:2741-2747. [DOI: 10.1099/ijs.0.000276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strawberry red leaf phytoplasma was found in strawberry plants from production fields in Lules (Tucumán province) and Bella Vista (Corrientes province), Argentina. Characteristic strawberry red leaf symptoms were stunting, young leaves with yellowing at the edges, mature leaves which curled and were reddish at the abaxial face, flower and fruit deformation and death. The pathogen was detected with phytoplasma-universal primer pairs P1/P7 followed by R16F2n/R16R2 as nested primers in 13 diseased plants. Based on RFLP and sequence analysis of the amplified 16S rRNA gene, the phytoplasma was related to the 16SrXIII group (Mexican periwinkle virescence). In silico the RFLP profile of all the samples analysed revealed the presence of a unique pattern, showing that the novel phytoplasma is different from all the phytoplasmas currently composing the 16SrXIII group. The phylogenetic analysis was consistent with RFLP analysis as the strawberry red leaf phytoplasma was grouped within the 16SrXIII group, but formed a particular cluster. On this basis, the Strawberry red leaf phytoplasma associated with strawberry red leaf disease was assigned to a new subgroup, 16SrXIII-F.
Collapse
Affiliation(s)
- Franco D. Fernández
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino a 60 cuadras km 5 ½. (X5020ICA), Córdoba, Argentina
| | - Natalia G. Meneguzzi
- Estación Experimental Agropecuaria Famaillá-INTA, Ruta Prov. 301 km 32 (4132), Famaillá, Tucumán, Argentina
| | - Fabiana A. Guzmán
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino a 60 cuadras km 5 ½. (X5020ICA), Córdoba, Argentina
| | - Daniel S. Kirschbaum
- Estación Experimental Agropecuaria Famaillá-INTA, Ruta Prov. 301 km 32 (4132), Famaillá, Tucumán, Argentina
| | - Vilma C. Conci
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino a 60 cuadras km 5 ½. (X5020ICA), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claudia F. Nome
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino a 60 cuadras km 5 ½. (X5020ICA), Córdoba, Argentina
| | - Luis R. Conci
- Universidad Católica de Córdoba; UCC, Córdoba, Argentina
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA, Camino a 60 cuadras km 5 ½. (X5020ICA), Córdoba, Argentina
| |
Collapse
|
26
|
Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. ScientificWorldJournal 2015; 2015:982412. [PMID: 25667940 PMCID: PMC4312627 DOI: 10.1155/2015/982412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Alireza Valdiani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - David Cahill
- School of Life and Environmental Sciences, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC 3220, Australia
| | - Yee-How Tan
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Mahmood Maziah
- Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| | - Rambod Abiri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
| |
Collapse
|
27
|
Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M, Eden-Green S, Dollet M, Dickinson M. ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 2014; 64:1890-1899. [DOI: 10.1099/ijs.0.060053-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100 % identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0–99.6 % identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d’Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5 % sequence identity with all previously described members of ‘Candidatus
Phytoplasma
’. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of ‘Candidatus
Phytoplasma
’, justifying its recognition as the reference strain of a novel taxon, ‘Candidatus Phytoplasma palmicola’. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d’Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.
Collapse
Affiliation(s)
- Nigel A. Harrison
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, FL 33314, USA
| | - Robert E. Davis
- Molecular Plant Pathology Laboratory, USDA–Agricultural Research Service, Beltsville, MD 20705, USA
| | - Carlos Oropeza
- Centro de Investigación Científica de Yucatán (CICY), CP 97200 Mérida, Yucatan, Mexico
| | - Ericka E. Helmick
- University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, FL 33314, USA
| | - María Narváez
- Centro de Investigación Científica de Yucatán (CICY), CP 97200 Mérida, Yucatan, Mexico
| | | | - Michel Dollet
- CIRAD, Etiologie – dépérissement, UPR 29, Campus international de Baillarguet, 34398 Montpellier cedex 5, France
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
28
|
Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.512191] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|