1
|
Huang X, Qi S, Song W, Yu X, Zhang H, Xiang W, Zhao J, Wang X. Massilia luteola sp. nov., a novel indole-producing and cellulose-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619981 DOI: 10.1099/ijsem.0.006331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
A Gram-stain-negative, rod-shaped, indole-producing, and cellulose-degrading bacterial strain, designated NEAU-G-C5T, was isolated from soil collected from a forest in Dali city, Yunnan province, south China. 16S rRNA gene sequence analysis showed that strain NEAU-G-C5T was assigned to the genus Massilia and showed high sequence similarities to Massilia phosphatilytica 12-OD1T (98.32 %) and Massilia putida 6 NM-7T (98.41 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-G-C5T formed a lineage related to M. phosphatilytica 12-OD1T and M. putida 6 NM-7T. The major fatty acids of the strain were C16 : 0, C16 : 1 ω7c, and C17 : 0 cyclo. The respiratory quinone was Q-8. The polar lipid profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. In addition, the average nucleotide identity values between strain NEAU-G-C5T and its reference strains M. phosphatilytica 12-OD1T, M. putida 6 NM-7T, M. norwichensis NS9T, and M. kyonggiensis TSA1T were 89.7, 88.2, 81.3, and 88.0 %, respectively, and the levels of digital DNA-DNA hybridization between them were found to be 58.5 % (54.9-62.0 %), 53.2 % (49.8-56.7 %), 31.9 % (28.6-35.5 %), and 57.7 % (54.1-61.2 %), respectively, which were lower than the accepted threshold values of 95-96 % and 70 %, respectively. The DNA G+C content of strain NEAU-G-C5T was 66.5 mol%. The strain could produce indoleacetic acid and cellulase. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, we conclude that strain NEAU-G-C5T represents a novel species of the genus Massilia, for which the name Massilia luteola sp. nov. is proposed. The type strain is NEAU-G-C5T (=MCCC 1K08668T=KCTC 8080T).
Collapse
Affiliation(s)
- Xinbing Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Shengtao Qi
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiaoxin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Haifeng Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| |
Collapse
|
2
|
Bowman JP. Genome-wide and constrained ordination-based analyses of EC code data support reclassification of the species of Massilia La Scola et al. 2000 into Telluria Bowman et al. 1993, Mokoshia gen. nov. and Zemynaea gen. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37589187 DOI: 10.1099/ijsem.0.005991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Based on genome-wide data, Massilia species belonging to the clade including Telluria mixta LMG 11547T should be entirely transferred to the genus Telluria owing to the nomenclatural priority of the type species Telluria mixta. This results in the transfer of 35 Massilia species to the genus Telluria. The presented data also supports the creation of two new genera since peripherally branching Massilia species are distinct from Telluria and other related genera. It is proposed that 13 Massilia species are transferred to Mokoshia gen. nov. with the type species designated Mokoshia eurypsychrophila comb. nov. The species Massilia arenosa is proposed to belong to the genus Zemynaea gen. nov. as the type species Zemynaea arenosa comb. nov. The genome-wide analysis was well supported by canonical ordination analysis of Enzyme Commission (EC) codes annotated from genomes via pannzer2. This new approach was performed to assess the conclusions of the genome-based data and reduce possible ambiguity in the taxonomic decision making. Cross-validation of EC code data compared within canonical plots validated the reclassifications and correctly visualized the expected genus-level taxonomic relationships. The approach is complementary to genome-wide methodology and could be used for testing sequence alignment based data across genetically related genera. In addition to the proposed broader reclassifications, invalidly described species 'Massilia antibiotica', 'Massilia aromaticivorans', 'Massilia cellulosiltytica' and 'Massilia humi' are described as Telluria antibiotica sp. nov., Telluria aromaticivorans sp. nov., Telluria cellulosilytica sp. nov. and Pseudoduganella humi sp. nov., respectively. In addition, Telluria chitinolytica is reclassified as Pseudoduganella chitinolytica comb. nov. The use of combined genome-wide and annotation descriptors compared using canonical ordination clarifies the taxonomy of Telluria and its sibling genera and provides another way to evaluate complex taxonomic data.
Collapse
Affiliation(s)
- John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
3
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
4
|
Yue J, Yang F, Wang S, Yuan J, Li L, Liu L. Massilia phyllostachyos sp. nov., Isolated from the Roots of Moso Bamboo in China. Curr Microbiol 2022; 80:54. [PMID: 36585979 DOI: 10.1007/s00284-022-03163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
A Gram-negative, strictly aerobic, motile, and rod-shaped bacterial strain G4R7T was isolated from the roots of moso bamboo (Phyllostachys edulis) in Zhejiang, Hangzhou Province, China. After comparing 16S rRNA gene sequences, strain G4R7T exhibited the highest similarities with Massilia neuiana PTW21T (98.3%), followed by M. agri K-3-1T (98.3%), M. consociate CCUG 58010T (97.7%), M. niastensis 5516S-1T (97.7%) and M. yuzhufengensis ZD1-4T (97.6%). The phylogenetic analysis revealed that strain G4R7T belonged to the genus Massilia. The draft genome of strain G4R7T was 5.81 Mb, and the G+C content was 64.4%. The average nucleotide identity values between G4R7T and another related member of the genus Massilia ranged from 76.6 to 87.2%, and the digital DNA-DNA hybridization ranged from 20.7 to 27.9%. Strain G4R7T grew at 15-37 °C (optimum 25-30 °C) and pH 6.0-9.0 (optimum pH 7.0) in the presence of 0-3% (w/v) NaCl (optimum 0%). The respiratory quinone was Q-8, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and aminophospholipid. The major cellular fatty acids were C10:0 3OH, C12:0, C12:0 2OH, and C16:0, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). As per the data from chemotaxonomic, phylogenetic, and phenotypic evidence, strain G4R7T represents a new species of genus Massilia, for which the name Massilia phyllostachyos sp. nov. is proposed. The type strain is G4R7T (=ACCC 61911T=GDMCC 1.2961T=JCM 35225T).
Collapse
Affiliation(s)
- Jinjun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Fu Yang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Siyu Wang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jinling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Lubin Li
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
5
|
Jiang S, Su T, Zhao J, Wang Z. Isolation, Identification, and Characterization of Polystyrene-Degrading Bacteria From the Gut of Galleria Mellonella (Lepidoptera: Pyralidae) Larvae. Front Bioeng Biotechnol 2021; 9:736062. [PMID: 34485265 PMCID: PMC8416307 DOI: 10.3389/fbioe.2021.736062] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Polystyrene (PS) is a widely used petroleum-based plastic, that pollutes the environment because it is difficult to degrade. In this study, a PS degrading bacterium identified as Massilia sp. FS1903 was successfully isolated from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae that were fed with PS foam. Scanning electron microscopy and X-ray energy dispersive spectrometry showed that the structure and morphology of the PS film was destroyed by FS 1903, and that more oxygen appeared on the degraded PS film. A water contact angle assay verified the chemical change of the PS film from initially hydrophobic to hydrophilic after degradation. X-ray photoelectron spectroscopy further demonstrated that more oxygen-containing functional groups were generated during PS degradation. After 30 days of bacterial stain incubation with 0.15 g PS, 80 ml MSM, 30°C and PS of Mn 64400 and Mw 144400 Da, the weight of the PS film significantly decreased, with 12.97 ± 1.05% weight loss. This amount of degradation exceeds or is comparable to that previously reported for other species of bacteria reported to degrade PS. These results show that Massilia sp. FS1903 can potentially be used to degrade PS waste.
Collapse
Affiliation(s)
- Shan Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Tingting Su
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Jingjing Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Zhanyong Wang
- Department of Biotechnology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Du C, Li C, Cao P, Li T, Du D, Wang X, Zhao J, Xiang W. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from rhizosphere soil of rice (Oryza sativa L.) and its whole genome analysis. Antonie van Leeuwenhoek 2021; 114:1529-1540. [PMID: 34324104 DOI: 10.1007/s10482-021-01618-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
A bacterial strain, Gram-stain negative, rod-shaped, aerobic and cellulose-degrading, designated NEAU-DD11T, was isolated from rhizosphere soil of rice collected from Northeast Agricultural University in Harbin, Heilongjiang Province, North-east China. Base on 16S rRNA gene sequence analysis, strain NEAU-DD11T belongs to the genus Massilia and shared high sequence similarities with Massilia phosphatilytica 12-OD1T (98.46%) and Massilia putida 6NM-7 T (98.41%). Phylogenetic analysis based on the 16S rRNA gene and whole genome sequences indicated that strain NEAU-DD11T formed lineage related to M. phosphatilytica 12-OD1T and M. putida 6NM-7 T. The major fatty acids of the strain were C16:0, C17:0-cyclo and C16:1ω7c. The respiratory quinone was Q-8. The polar lipids profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified polar lipid and an unidentified phospholipid. In addition, the digital DNA-DNA hybridization values between strain NEAU-DD11T and M. phosphatilytica 12-OD1T and M. putida 6NM-7 T were 45.4 and 35.6%, respectively, which are lower than the accepted threshold value of 70%. The DNA G + C content of strain NEAU-DD11T was 66.2%. The whole genome analysis showed the strain contained carbohydrate enzymes such as glycoside hydrolase and polysaccharide lyase, which enabled the strain to have the function of degrading cellulose. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, we conclude that strain NEAU-DD11T represents a novel species of the genus Massilia, for which the name Massilia cellulosiltytica sp. nov. is proposed. The type strain is NEAU-DD11T (= CCTCC AB 2019141 T = DSM 109721 T).
Collapse
Affiliation(s)
- Chuanjiao Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Tingting Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Dandan Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, 150030, Harbin, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Shen L, Liu Y, Wang N, Adhikari NP. Genomic Insights of Dyadobacter tibetensis Y620-1 Isolated from Ice Core Reveal Genomic Features for Succession in Glacier Environment. Microorganisms 2019; 7:E211. [PMID: 31336655 PMCID: PMC6680632 DOI: 10.3390/microorganisms7070211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Glaciers have been recognized as biomes, dominated by microbial life. Many novel species have been isolated from glacier ecosystems, and their physiological features are well characterized. However, genomic features of bacteria isolated from the deep ice core are poorly understood. In this study, we performed a comparative genomic analysis to uncover the genomic features of strain Dyadobacter tibetensis Y620-1 isolated from a 59 m depth of the ice core drilled from a Tibetan Plateau glacier. Strain D. tibetensis Y620-1 had the smallest genome among the 12 cultured Dyadobacter strains, relatively low GC content, and was placed at the root position of the phylogenomic tree. The gene family based on a nonmetric multidimensional scaling (NMDS) plot revealed a clear separation of strain D. tibetensis Y620-1 from the reference strains. The genome of the deep ice core isolated strain contained the highest percentage of new genes. The definitive difference is that all genes required for the serine-glyoxylate cycle in one-carbon metabolism were only found in strain D. tibetensis Y620-1, but not in any of the reference strains. The placement of strain D. tibetensis Y620-1 in the root of the phylogenomic tree suggests that these new genes and functions are of ancient origin. All of these genomic features may contribute to the survival of D. tibetensis Y620-1 in the glacier.
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Science, Northwest University, Xian 710069, China
| | - Namita Paudel Adhikari
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Zhao X, Li X, Qi N, Gan M, Pan Y, Han T, Hu X. Massilia neuiana sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:4943-4947. [PMID: 29034859 DOI: 10.1099/ijsem.0.002333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic, Gram-stain-negative, rod-shaped, motile bacterium, strain PTW21T, was isolated from wet soil. 16S rRNA gene sequence phylogenetic analysis of strain PTW21T revealed an affiliation to the genus Massilia and it shared 98.5 and 98.1 % similarity with Massilianiastensis 5516 S-1T and Massilia tieshanensis TS3T, respectively. Growth occurred at 10-45 °C, pH 4.5-12.5 and NaCl concentrations up to 2 % (w/v). The major fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0. The predominant respiratory quinone was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain PTW21T was 64.6 mol%. The results of DNA-DNA hybridization revealed that strain PTW21T showed 37.4 % relatedness with Massilia niastensis 5516 S-1T and 40.0 % with M. tieshanensis TS3T. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain PTW21T (=CICC 24113T=BCRC 81061T) is proposed as the type strain of novel species of the genus Massilia with the names Massilia neuiana sp. nov.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Xuejie Li
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Nan Qi
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Meijun Gan
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yujin Pan
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Tianfang Han
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| |
Collapse
|
9
|
Sun LN, Yang ED, Cui DX, Ni YW, Wang YB, Sun DD, Wang WY. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67:4390-4396. [PMID: 28933315 DOI: 10.1099/ijsem.0.002301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped and motile bacterial strain, designated A9T, was isolated from the surface of rock collected from the shore of Nvshan lake in Mingguang, Anhui province, China. Phylogenetic analysis based on 16S rDNA sequence data showed that strain A9T was affiliated with the genus Massilia and showed the highest sequence similarities to Massilia plicata KCTC 12344T (98.8 %) and Massilia lurida CGMCC 1.10822T (97.9 %). The major fatty acids (>5 %) were summed feature 3 (C16 : 1ω7c and/or C15 : 0 iso 2-OH), C16 : 0 and C18 : 1ω7c. Strain A9T contained Q-8 as the predominant ubiquinone and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid as the predominant polar lipids. The DNA G+C content was 69.9 mol%. Mean DNA-DNA relatedness values between strain A9T and its closest phylogenetic relatives, M. plicata KCTC 12344T and M. lurida CGMCC 1.10822T, were 38.8 % and 23.23 %, respectively. On the basis of the results obtained in this study, strain A9T is considered to represent a novel species of the genus Massilia, for which the name Massilia buxea sp. nov. is proposed. The type strain is A9T (=DSM 103547T=CGMCC 1.15931T=KCTC 52429T).
Collapse
Affiliation(s)
- Le-Ni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - En-Dong Yang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Dan-Xi Cui
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Ye-Wen Ni
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yu-Bo Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Dong-Dong Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei-Yun Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
10
|
Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67:2514-2519. [PMID: 28853679 DOI: 10.1099/ijsem.0.001916] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest similarities with Massilia putida6 NM-7T (98.67 %), Massilia kyonggiensis TSA1T (98.28 %), and Massilia norwichensis NS9T (98.07 %), respectively. The DNA G+C content was 67.72 mol% and DNA-DNA hybridization showed low relatedness values (less than 47 %) between strain 12-OD1T and other phylogenetically related species of the genus Massilia. The predominant isoprenoid quinone was Q-8 and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were C17 : 0 cyclo (25.4 %), C16 : 0 (23.4 %) and summed feature 3 (C16 : 1ω7c and/or C16 : 1 ω6c) (22.5 %), which differentiates it from close relatives within the genus Massilia. Combined genetic, physiological and biochemical properties indicate that strain 12-OD1T is a novel species of the genus Massilia, for which the name Massilia phosphatilytica sp. nov., is proposed, with the type strain 12-OD1T (=CCTCC AB 2016251T=LMG 29956T=KCTC 52513T).
Collapse
Affiliation(s)
- Bang-Xiao Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Fang Bi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiu-Li Hao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Guo-Wei Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
11
|
Gu Z, Liu Y, Xu B, Wang N, Jiao N, Shen L, Liu H, Zhou Y, Liu X, Li J, Sun J. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int J Syst Evol Microbiol 2017; 67:4075-4079. [PMID: 28901899 DOI: 10.1099/ijsem.0.002252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, bacterial strain, B448-2T, was isolated from an ice core from the Muztagh Glacier, on the Tibetan Plateau. B448-2T grew optimally at pH 7.0 and 20 °C in the presence of 0-1.0 % (w/v) NaCl. The results of 16S rRNA gene sequence similarity analysis indicated that B448-2T was closely related to Massilia eurypsychrophila CGMCC 1.12828T, Rugamonas rubra CCM3730T and Duganella zoogloeoides JCM20729T at levels of 97.8, 97.7 and 97.3 %, respectively. The predominant fatty acids of B448-2T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The predominant isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of the strain was 66.1 mol%. In DNA-DNA hybridization tests, B448-2T shared 37.6 % DNA-DNA relatedness with Massilia eurypsychrophila CGMCC 1.12828T. On the basis of the results for phenotypic and chemotaxonomic characteristics, B448-2T was considered to represent a novel species of the genus Massilia, for which the name Massiliaglaciei sp. nov. is proposed. The type strain is B448-2T (=JCM 30271T=CGMCC 1.12920T).
Collapse
Affiliation(s)
- Zhengquan Gu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Science, Beijing 100049, PR China
| | - Yongqin Liu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.,Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China.,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Science, Beijing 100049, PR China
| | - Baiqing Xu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.,College of Urban and Environmental Science, Northwest University, Xi'an 710069, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaobo Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiule Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
12
|
Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:2696-2703. [PMID: 28809142 DOI: 10.1099/ijsem.0.002002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A light yellow-coloured, Gram-stain-negative, motile and rod-shaped bacterium, designated strain K-3-1T, was isolated from reclaimed grassland soils of Belbari, Morang, Nepal. It was able to grow at 4-45 °C, at pH 5.0-10.0, and at 0-2 % (w/v) NaCl concentrations. This strain was taxonomically characterized by a polyphasic approach. Based on the 16S rRNA gene sequence analysis, strain K-3-1T belongs to the genus Massilia and is closely related to Massilia consociata CCUG 58010T (98.3 % sequence similarity), Massilia tieshanensis TS3T (98.1 % sequence similarity), Massilia kyonggiensis TSA1T (98.1 % sequence similarity), Massilia yuzhufengensisY1243-1T (98.1 % sequence similarity), Massilia haematophila CCUG 38318T (98.0 % sequence similarity), Massilia varians CCUG 35299T (97.9 % sequence similarity), Massilia niastensis 5516 S-1T (97.6 % sequence similarity) and Massilia alkalitolerans YIM 31775T (97.5 % sequence similarity). The predominant respiratory quinone was ubiquinone-8. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The predominant fatty acids of strain K-3-1T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0, C12 : 0, C10 : 0 3-OH and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The genomic DNA G+C content of this novel strain was 66.8 mol%. The DNA-DNA relatedness between strain K-3-1T and its closest reference strains were significantly lower than the threshold value of 70 %. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain K-3-1T represents a novel species of the genus Massilia, for which the name Massilia agri sp. nov. is proposed. The type strain is K-3-1T (=KEMB 9005-446T=KACC 19000T=JCM 31661T).
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
13
|
Cho J, Kim KH, Kim JO, Hong JS, Jeong SH, Lee K. Massilia varians Isolated from a Clinical Specimen. Infect Chemother 2017; 49:219-222. [PMID: 28608658 PMCID: PMC5620389 DOI: 10.3947/ic.2017.49.3.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
We report a case of Massilia varians isolated from a deep finger wound following orthopedic surgery on an immunocompetent patient. The bacterium was identified by 16S rDNA sequence analysis. This is the first case of M. varians isolated from a clinical specimen since the first report in 2008.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keon Han Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Sung Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico). Extremophiles 2017; 21:499-511. [DOI: 10.1007/s00792-017-0920-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
15
|
Altankhuu K, Kim J. Massilia pinisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:3669-3674. [DOI: 10.1099/ijsem.0.001249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Khulan Altankhuu
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
16
|
Guo B, Liu Y, Gu Z, Shen L, Liu K, Wang N, Xing T, Liu H, Zhou Y, Li J. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088-4093. [PMID: 27432318 DOI: 10.1099/ijsem.0.001315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped, motile bacterium, strain B1555-1T, was isolated from an ice core drilled from Ulugh Muztagh Glacier, China. The optimum growth temperature of strain B1555-1T was 15 °C and optimum pH was 7. The major fatty acids of strain B1555-1T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The predominant respiratory quinone was Q-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain B1555-1T was 66.0 mol%. In 16S rRNA gene sequence comparisons, strain B1555-1T was affiliated to the genus Massilia and shared 98.30 and 97.13 % similarity with Massilia eurypsychrophila B528-3T and Massilia niabensis 5420S-26T, respectively. The results of DNA-DNA hybridization revealed that strain B1555-1T showed 49.8 % relatedness with M. eurypsychrophila B528-3T and 38.5 % with M. niabensis 5420S-26T. Based on the genotypic and phenotypic evidence presented in this study, strain B1555-1T represents a novel species of the genus Massilia, for which the name Massilia psychrophila sp. nov. is proposed. The type strain is B1555-1T (=CGMCC 1.15196T=JCM 30813T).
Collapse
Affiliation(s)
- Bixi Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yongqin Liu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, PR China.,Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhengquan Gu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Liang Shen
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Keshao Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ningliang Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, PR China.,State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 73000, PR China
| | - Tingting Xing
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiule Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
17
|
Wang H, Lou J, Gu H, Luo X, Yang L, Wu L, Liu Y, Wu J, Xu J. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13378-13388. [PMID: 27026540 DOI: 10.1007/s11356-016-6515-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.
Collapse
Affiliation(s)
- Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Yong Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, China
| | - Jianjun Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Shen L, Liu Y, Gu Z, Xu B, Wang N, Jiao N, Liu H, Zhou Y. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124-2129. [DOI: 10.1099/ijs.0.000229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain B528-3T, a Gram-stain-negative, rod-shaped, aerobic, facultatively psychrophilic bacterium with polar flagella, was isolated from an ice core drilled from Muztagh Glacier, Xinjiang, China. The novel isolate was classified into the genus Massilia. The 16S rRNA gene sequence of the novel isolate shares a pairwise similarity of less than 97 % with those of all the type strains of the genus Massilia. The major fatty acids of strain B528-3T were summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH) (57.31 %), C16:0 (11.46 %) and C18:1ω7c (14.72 %). The predominant isoprenoid quinone was Q-8. The DNA G+C content was 62.2 mol% (T
m). The major polar lipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. From the genotypic and phenotypic data, it is evident that strain B528-3T represents a novel species of the genus Massilia, for which the name Massilia eurypsychrophila sp. nov. is proposed. The type strain is B528-3T ( = JCM 30074T = CGMCC 1.12828T).
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences
| | - Zhengquan Gu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences
| | - Ninglian Wang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
19
|
Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014; 65:56-64. [PMID: 25273514 DOI: 10.1099/ijs.0.068296-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped and motile bacterial isolate, designated strain NS9(T), isolated from air of the Sainsbury Centre for Visual Arts in Norwich, UK, was subjected to a polyphasic taxonomic study including phylogenetic analyses based on partial 16S rRNA, gyrB and lepA gene sequences and phenotypic characterization. The 16S rRNA gene sequence of NS9(T) identified Massilia haematophila CCUG 38318(T), M. niastensis 5516S-1(T) (both 97.7% similarity), M. aerilata 5516S-11(T) (97.4%) and M. tieshanensis TS3(T) (97.4%) as the next closest relatives. In partial gyrB and lepA sequences, NS9(T) shared the highest similarities with M. haematophila CCUG 38318(T) (94.5%) and M. aerilata 5516-11(T) (94.3%), respectively. These sequence data demonstrate the affiliation of NS9(T) to the genus Massilia. The detection of the predominant ubiquinone Q-8, a polar lipid profile consisting of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and a polyamine pattern containing 2-hydroxyputrescine and putrescine were in agreement with the assignment of strain NS9(T) to the genus Massilia. Major fatty acids were summed feature 3 (C16:1ω7c and/or iso-C15 : 0 2-OH), C16:0, C18: 1ω7c and C10:0 3-OH. Dissimilarities in partial lepA and gyrB gene sequences as well as results from DNA-DNA hybridizations demonstrate that strain NS9(T) is a representative of an as-yet undescribed species of the genus Massilia that is also distinguished from its close relatives based on physiological and biochemical traits. Hence, we describe a novel species, for which we propose the name Massilia norwichensis sp. nov., with the type strain NS9(T) ( = CCUG 65457(T) =LMG 28164(T)).
Collapse
Affiliation(s)
- Ivana Orthová
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - René Kaden
- Department of Medical Sciences, Clinical Bacteriology, University of Uppsala, SE-75185 Uppsala, Sweden
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| |
Collapse
|
20
|
Katra I, Arotsker L, Krasnov H, Zaritsky A, Kushmaro A, Ben-Dov E. Richness and diversity in dust stormborne biomes at the southeast mediterranean. Sci Rep 2014; 4:5265. [PMID: 24919765 PMCID: PMC4053720 DOI: 10.1038/srep05265] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/15/2014] [Indexed: 12/26/2022] Open
Abstract
Dust storms include particulate matter that is transported over land and sea with biota that could impact downwind ecosystems. In addition to the physico-chemical compositions, organismal diversities of dust from two storm events in southern Israel, December 2012 (Ev12) and January 2013 (Ev13), were determined by pyro-sequencing using primers universal to 16S and 18S rRNA genes and compared. The bio-assemblages in the collected dust samples were affiliated with scores of different taxa. Distinct patterns of richness and diversity of the two events were influenced by the origins of the air masses: Ev13 was rich with reads affiliated to Betaproteobacteria and Embryophyta, consistent with a European origin. Ev12, originated in north-Africa, contained significantly more of the Actinobacteria and fungi, without conifers. The abundance of bacterial and eukaryotic reads demonstrates dissemination of biological material in dust that may impose health hazards of pathogens and allergens, and influence vegetation migration throughout the world.
Collapse
Affiliation(s)
- Itzhak Katra
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Luba Arotsker
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Helena Krasnov
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel
| | - Ariel Kushmaro
- 1] Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [2] National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [3] School of Materials Science and Engineering, Nanyang Technological University, Singapore 637819 (Singapore)
| | - Eitan Ben-Dov
- 1] National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84104, Israel [2] Department of Life Sciences, Achva Academic College MP Shikmim, 79800, Israel
| |
Collapse
|