1
|
Pitt A, Schmidt J, Koll U, Hahn MW. Aquiluna borgnonia gen. nov., sp. nov., a member of a Microbacteriaceae lineage of freshwater bacteria with small genome sizes. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999796 DOI: 10.1099/ijsem.0.004825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actinobacterial strain 15G-AUS-rotT was isolated from an artificial pond located near Salzburg, Austria. The strain showed 16S rRNA gene sequence similarities of 98.7 % to Candidatus Aquiluna rubra and of 96.6 and 96.7 % to the two validly described species of the genus Rhodoluna. Phylogenetic reconstructions based on 16S rRNA gene sequences and genome-based on amino acid sequences of 118 single copy genes referred strain 15G-AUS-rotT to the family Microbacteriaceae and therein to the so-called subcluster Luna-1. The genome-based phylogenetic tree showed that the new strain represents a putative new genus. Cultures of strain 15G-AUS-rotT were light red pigmented and comprised very small, rod-shaped cells. They metabolized a broad variety of substrates. Major fatty acids (>10 %) of cells were iso-C16 : 0, antiso-C15 : 0 and iso-C14 : 0. The major respiratory quinone was MK-11 and a minor component was MK-10. The peptidoglycan structure belonged to an unusual B type. The closed genome sequence of the strain was very small (1.4 Mbp) and had a DNA G+C content of 54.8 mol%. An interesting feature was the presence of genes putatively encoding the complete light-driven proton pumping actinorhodopsin/retinal system, which were located at three different positions of the genome. Based on the characteristics of the strain, a new genus and a new species termed Aquiluna borgnonia is proposed for strain 15G-AUS-rotT (=DSM 107803T=JCM 32974T).
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
2
|
Jiang LQ, Zhang K, Li GD, Wang XY, Shi SB, Li QY, An DF, Lang L, Wang LS, Jiang CL, Jiang Y. Naasia lichenicola sp. nov., an actinobacterium isolated from lichen. Int J Syst Evol Microbiol 2019; 70:1026-1030. [PMID: 31738159 DOI: 10.1099/ijsem.0.003865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, yellow-pigmented, catalase-positive and oxidase-negative, strictly aerobic actinobacterium, designated strain YIM 131853T, was isolated from lichen collected from the South Bank of the Baltic Sea. The novel strain was non-spore-forming, short rod-shaped and motile with a single polar flagellum. The strain could grow at 4-37 °C (optimum, 28 °C), at pH 4.0-12.0 (pH 6.0) and at 0-3 % (w/v) NaCl (1 %). The DNA G+C content of strain YIM 131853T based on the draft genome sequence was 68.3 mol%. Predominant cellular fatty acids (>10 %) were identified as anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipid profile included diphosphatidylglycerol, dimannosyldiacylglycerol, three unknown glycolipids, two unknown phospholipids and one unknown lipid. Strain YIM 131853T had 2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, galactose and glucose as whole-cell sugars, and MK-10, MK-14, MK-13 and MK-12 as the major menaquinones. Although strain YIM 131853T exhibited a highest 16S rRNA gene sequence similarity (96.6 %) to Amnibacterium kyonggiense NBRC 109360T, phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a tight lineage with Naasia aerilata NBRC 108725T (96.5 % 16S rRNA gene sequence similarity), which was the only species of genus Naasia. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain YIM 131853T should belong to the genus Naasia and represents a novel species of the genus Naasia, for which the name Naasia lichenicola sp. nov. is proposed. The type strain is YIM 131853T (=CGMCC 4.7565T=NBRC 113605T).
Collapse
Affiliation(s)
- Long-Qian Jiang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Kun Zhang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Gui-Ding Li
- Institute of Microbial Pharmaceuticals, Northeastern University, Shenyang 110819, PR China.,Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Xin-Yu Wang
- Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Song-Biao Shi
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Qin-Yuan Li
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - De-Feng An
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Lei Lang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Li-Song Wang
- Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Cheng-Lin Jiang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, Yunnan University, Kunming, PR China
| |
Collapse
|
3
|
Luethyella okanaganae gen. nov., sp. nov., a Novel Genus and Species of the Family Microbacteriaceae Isolated from the Insect Okanagana rimosa. Curr Microbiol 2017; 74:419-424. [PMID: 28194502 DOI: 10.1007/s00284-016-1186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
The entomopathogen "Corynebacterium okanaganae" was described by Lüthy in 1974 but the name was never validly published. Phylogenetic analysis employing 16S rRNA gene sequences demonstrate that "Corynebacterium okanaganae" is not a member of the genus Corynebacterium but related to members of the Microbacteriaceae being most closely related to, but distinct from, members of the genera Rathayibacter, Mycetocola and Curtobacterium. The bacterium is an aerobic, Gram-positive staining, rod-shaped actinobacterium with the cell-wall peptidoglycan based on 2,4, diaminobutyric acid as the diagnostic diamino acid. The predominant menaquinones are MK-10, MK-11 and MK-12, and the principle polar lipids are phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids consist of anteiso-C15:0 and anteiso-C17:0. Therefore, based upon the phylogenetic, biochemical, and chemotaxonomic information, the organism merits recognition as a novel species and genus in the family Microbacteriaceae, for which the name Luethyella okanaganae gen. nov. sp. nov. is proposed. The type strain is LBG B4405T = CCUG 43304T = NCIMB 702272T.
Collapse
|
4
|
Zhang L, Chen XL, Hu Q, Ruan ZP, Chen K, Li SP, Jiang JD. Huakuichenia soli gen. nov., sp. nov., a new member of the family Microbacteriaceae, isolated from contaminated soil. Int J Syst Evol Microbiol 2016; 66:5399-5405. [DOI: 10.1099/ijsem.0.001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xiao-Long Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zhe-Pu Ruan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
5
|
Tuo L, Guo L, Liu SW, Liu JM, Zhang YQ, Jiang ZK, Liu XF, Chen L, Zu J, Sun CH. Lysinibacter cavernae gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a karst cave. Int J Syst Evol Microbiol 2016; 65:3305-3312. [PMID: 26296577 DOI: 10.1099/ijsem.0.000415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, straight or slightly bent rod-shaped, non-motile, non-spore-forming bacterium, designated strain CC5-806T, was isolated from a soil sample collected from a wild karst cave in the Wulong region, Chongqing, PR China and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelium or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain CC5-806T grew optimally without NaCl at 20 °C and at pH 7.0. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain CC5-806T belonged to the family Microbacteriaceae and showed the highest levels of 16S rRNA gene sequence similarities with Frigoribacterium endophyticum EGI 6500707T (97.56 %), Frigoribacterium faeni 801T (97.53 %) and Glaciihabitans tibetensis MP203T (97.42 %). Phylogenetic trees revealed that strain CC5-806T did not show a clear affiliation to any genus within the family Microbacteriaceae. The DNA G+C content of strain CC5-806T was 62.6 mol%. The cell-wall peptidoglycan contained l-lysine as a diagnostic diamino acid. The predominant menaquinones were MK-11, MK-10 and MK-9. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, four unidentified phospholipids and other polar lipids were detected in the polar lipid extracts. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. On the basis of the phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain CC5-806T was distinguishable from phylogenetically related genera in the family Microbacteriaceae. It represents a novel species of a novel genus, for which the name Lysinibacter cavernae gen. nov., sp. nov. is proposed. The type strain is CC5-806T ( = DSM 27960T = CGMCC 1.14983T).
Collapse
Affiliation(s)
- Li Tuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Lin Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jia-Meng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhong-Ke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xian-Fu Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian Zu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
6
|
Nakai R, Baba T, Niki H, Nishijima M, Naganuma T. Aurantimicrobium minutum gen. nov., sp. nov., a novel ultramicrobacterium of the family Microbacteriaceae, isolated from river water. Int J Syst Evol Microbiol 2015; 65:4072-4079. [PMID: 26294911 DOI: 10.1099/ijsem.0.000541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-motile, curved (selenoid), rod-shaped actinobacterium, designated KNCT, was isolated from the 0.2 μm-filtrate of river water in western Japan. Cells of strain KNCT were ultramicrosized (0.04-0.05 μm3). The strain grew at 15-37 °C, with no observable growth at 10 °C or 40 °C. The pH range for growth was 7-9, with weaker growth at pH 10. Growth was impeded by the presence of NaCl at concentrations greater than 1 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KNCT showed relatively high sequence similarity (97.2 %) to Alpinimonas psychrophila Cr8-25T in the family Microbacteriaceae. However, strain KNCT formed an independent cluster with cultured, but as-yet-unidentified, species and environmental clones on the phylogenetic tree. The major cellular fatty acids were anteiso-C15 : 0 (41.0 %), iso-C16 : 0 (21.8 %), C16 : 0 (18.0 %) and anteiso-C17 : 0 (12.9 %), and the major menaquinones were MK-11 (71.3 %) and MK-12 (13.6 %). The major polar lipids were phosphatidylglycerol and two unknown glycolipids. The cell-wall muramic acid acyl type was acetyl. The peptidoglycan was B-type, and contained 3-hydroxyglutamic acid, glutamic acid, aspartic acid, glycine, alanine and lysine, with the latter being the diagnostic diamino acid. The G+C content of the genome was unusually low for actinobacteria (52.1 mol%), compared with other genera in the family Microbacteriaceae. Based on the phenotypic characteristics and phylogenetic evidence, strain KNCT represents a novel species of a new genus within the family Microbacteriaceae, for which the name Aurantimicrobium minutum gen. nov., sp. nov. is proposed. The type strain of the type species is KNCT ( = NBRC 105389T = NCIMB 14875T).
Collapse
Affiliation(s)
- Ryosuke Nakai
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Superlative Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan
| | - Tomoya Baba
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Niki
- Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co., Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
7
|
Kim SJ, Ahn JH, Weon HY, Hamada M, Suzuki KI, Kwon SW. Diaminobutyricibacter tongyongensis gen. nov., sp. nov. and Homoserinibacter gongjuensis gen. nov., sp. nov. belong to the family Microbacteriaceae. J Microbiol 2014; 52:527-33. [PMID: 24535740 DOI: 10.1007/s12275-014-3278-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 10/25/2022]
Abstract
Two bacterial strains, KIS66-7(T) and 5GH26-15(T), were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7(T) had the highest similarities with those of Labedella gwakjiensis KSW2-17(T) (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2Sb(T) (97.2%), Leifsonia naganoensis JCM 10592(T) (97.0%), and Cryobacterium mesophilum MSL-15(T) (97.0%). Strain 5GH26-15(T) showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7(T) exhibited 96.4% similarity with that from 5GH26-15(T). Strain KIS66-7(T) contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C15:0, ai-C17:0, and i-C16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C15:0, i-C16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7(T) and 5GH26-15(T) represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7(T)=KACC 15515(T)=NBRC 108724(T)) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15(T)=KACC 15524(T)=NBRC 108755(T)) within the family Microbacteriaceae.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 2014; 64:579-587. [DOI: 10.1099/ijs.0.052670-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-spore-forming, short-rod-shaped bacterium, designated strain MP203T, was isolated from ice water of Midui Glacier in Tibet Autonomous Region, China. The strain was psychrotolerant, growing at 0–25 °C. 16S rRNA gene sequence analysis showed that strain MP203T was most similar to
Frigoribacterium faeni
NBRC 103066T,
Compostimonas suwonensis
KACC 13354T,
Frigoribacterium mesophilum
KCTC 19311T,
Marisediminicola antarctica
CCTCC AB 209077T and
Alpinimonas psychrophila
JCM 18951T, with similarities of 97.4, 97.2, 97.2, 97.1 and 97.1 %, respectively. The maximum-likelihood phylogenetic tree indicated that strain MP203T clustered with nine genera of the family
Microbacteriaceae
, namely
Frigoribacterium
,
Compostimonas
,
Marisediminicola
,
Alpinimonas
,
Frondihabitans
,
Clavibacter
,
Subtercola
,
Klugiella
and
Agreia
. However, bootstrap analysis showed that there was no significance in the branching pattern of the linage comprising strain MP203T and any existing generic lineage of the family
Microbacteriaceae
. DNA–DNA hybridization results indicated levels of relatedness between strain MP203T and
Marisediminicola antarctica
CCTCC AB 209077T,
Frigoribacterium faeni
NBRC 103066T,
Frigoribacterium mesophilum
KCTC 19311T,
Compostimonas suwonensis
KACC 13354T and
Alpinimonas psychrophila
JCM 18951T were 25.8±7.3, 29.6±7.6, 19.7±6.7, 16.0±4.2 and 12.4±5.1 % (mean±sd), respectively. The G+C content of the genomic DNA was 64.1 mol%. Analysis of the cell-wall peptidoglycan revealed that the peptidoglycan structure of strain MP203T was B10 type with Gly[l-Hse]–d-Glu–d-DAB, containing 2, 4-diaminobutyric acid (DAB) as a diagnostic amino acid. The cell-wall sugars were rhamnose, ribose, mannose and glucose. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso A-C15 : 1. An unusual compound identified as anteiso-C15 : 0-DMA (1, 1-dimethoxy-anteiso-pentadecane) was also present in strain MP203T. The predominant menaquinone was MK-10. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one unknown glycolipid and four unknown lipids were detected in the polar lipid extracts. As strain MP203T was distinguishable from phylogenetically related genera in the family
Microbacteriaceae
in terms of its physiological and chemotaxonomic characteristics and phylogenetic position, it was considered to represent a novel species of a new genus. Thus, the name Glaciihabitans tibetensis gen. nov., sp. nov. is proposed. The type strain of Glaciihabitans tibetensis is MP203T ( = CGMCC 1.12484T = KCTC 29148T).
Collapse
|
9
|
Kim SJ, Lim JM, Ahn JH, Weon HY, Hamada M, Suzuki KI, Ahn TY, Kwon SW. Description of Galbitalea soli gen. nov., sp. nov., and Frondihabitans sucicola sp. nov. Int J Syst Evol Microbiol 2013; 64:572-578. [PMID: 24132916 DOI: 10.1099/ijs.0.058339-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial strains KIS82-1(T) and GRS42(T) were isolated from soil and from sap of Acer mono, respectively, in the Republic of Korea. Both strains were aerobic, Gram-stain-positive, mesophilic, rod-shaped and motile. Phylogenetically, both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS82-1(T) showed the highest similarity to those of Frondihabitans peucedani RS-15(T) (97.6%), Frigoribacterium mesophilum MSL-08(T) (97.2%) and Labedella gwakjiensis KSW2-17(T) (97.0%), while strain GRS42(T) showed the highest 16S rRNA gene sequence similarity to Frondihabitans peucedani RS-15(T) (98.7%), Frondihabitans cladoniiphilus CafT13(T) (98.4%), Frondihabitans australicus E1HC-02(T) (98.2%) and Frigoribacterium faeni 801(T) (97.3%). The 16S rRNA gene sequence similarity between GRS42(T) and KIS82-1(T) was 97.0%. Phylogenetic trees indicated that strain GRS42(T) was firmly grouped into the genus Frondihabitans, while strain KIS82-1(T) did not show a clear affiliation to any genus within the family Microbacteriaceae. Strain KIS82-1(T) showed type B1β peptidoglycan with 2,4-diamino-L-butyric acid as the diamino acid. It had MK-11, MK-10 and MK-12 as respiratory quinones, anteiso-C(15 : 0), iso-C(16: 0) and iso-C(14 : 0) as major cellular fatty acids and diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid as predominant polar lipids. The peptidoglycan of strain GRS42(T) was of type B2β with D-ornithine as the diamino acid. The strain contained MK-8, MK-9 and MK-7 as respiratory quinones, summed feature 8 (C(18 : 1)ω6c and/or C(18 : 1)ω7c) as major cellular fatty acid and diphosphatidylglycerol, phosphatidylglycerol and three unknown glycolipids as predominant polar lipids. Strain GRS42(T) revealed low DNA-DNA hybridization (<50% relatedness) with closely related strains. Based on the data obtained in the present polyphasic taxonomic study, we propose that strain KIS82-1(T) represents a novel genus and species and that strain GRS42(T) represents a novel species in the family Microbacteriaceae. The genus Galbitalea gen. nov. is proposed, with strain KIS82-1(T) ( = KACC 15520(T) = NBRC 108727(T)) as the type strain of the type species, Galbitalea soli sp. nov. Strain GRS42(T) ( = KACC 15521(T) = NBRC 108728(T)) is proposed as the type strain of Frondihabitans sucicola sp. nov.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jun-Muk Lim
- Department of Microbiology, Dankook University, Anseo-dong, Cheonan 330-714, Republic of Korea.,Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jae-Hyung Ahn
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Moriyuki Hamada
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken-Ichiro Suzuki
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tae-Young Ahn
- Department of Microbiology, Dankook University, Anseo-dong, Cheonan 330-714, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| |
Collapse
|
10
|
Kim SJ, Moon JY, Hamada M, Tamura T, Weon HY, Suzuki KI, Kwon SW. Rudaibacter terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2013; 63:4052-4057. [PMID: 23728372 DOI: 10.1099/ijs.0.049817-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, non-motile, rod-shaped bacterium, designated 5GHs34-4(T), was isolated from greenhouse soil in Yongin, Republic of Korea. Growth occurred in the temperature range of 10-37 °C (optimum 28-30 °C) and at pH 5.0-9.0 (optimum pH 7.0). It can tolerate up to 3 % (w/v) NaCl. The strain showed 16S rRNA gene sequence similarity levels of 95.1-97.0 % with species of the genus Leifsonia, 95.7-96.7 % with species of the genus Herbiconiux, 95.1-96.4 % with species of the genus Salinibacterium and 96.1 % with Labedella gwakjiensis and Homoserinimonas aerilata. The highest sequence similarities (97.0 %) were with Leifsonia aquatica JCM 1368(T), Leifsonia poae VKM Ac-1401(T) and Leifsonia psychrotolerans LI1(T). The peptidoglycan type determined for strain 5GHs34-4(T) was B2γ with dl-2,4-diaminobutyric acid at position 3. The murein was of the acetyl type. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The menaquinones detected were MK-13, MK-12 and MK-14, and the major fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), anteiso-C17 : 0 and anteiso-C15 : 0. The phenotypic and phylogenetic traits of strain 5GHs34-4(T) differed in some respects from those of members of the family Microbacteriaceae. Therefore, strain 5GHs34-4(T) is considered to represent a novel species of a new genus in the family Microbacteriaceae, for which the name Rudaibacter terrae gen. nov., sp. nov. is proposed. The type strain is 5GHs34-4(T) ( = KACC 15523(T) = NBRC 108754(T)).
Collapse
Affiliation(s)
- Soo-Jin Kim
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Ji-Young Moon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiko Tamura
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Ken-Ichiro Suzuki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| |
Collapse
|