1
|
Jeon D, Jiang L, Kim KH, Peng Y, Cho D, Jeong RD, Kim CY, Jeong JC, Lee J. Bioplastic (poly-3-hydroxybutyrate)-producing Massilia endophytica sp. nov., isolated from Cannabis sativa L. 'Cheungsam'. Sci Rep 2023; 13:17767. [PMID: 37853022 PMCID: PMC10584911 DOI: 10.1038/s41598-023-44976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
A rod-shaped, motile, Gram-negative bacterial strain named DM-R-R2A-13T was isolated from the plant Cannabis sativa L. 'Cheungsam'. The phylogenetic analysis of the 16S rRNA gene sequence revealed that strain DM-R-R2A-13T belongs to the family Oxalobacteraceae and is closely related to members of the genus Massilia, with Massilia flava (97.58% sequence similarity) and Massilia armeniaca (97.37% sequence similarity) being the closest members. The digital DNA-DNA hybridization (dDDH) values between strain DM-R-R2A-13T and Massilia flava CGMCC 1.10685T and Massilia armeniaca ZMN-3Twere 22.2% and 23.3%, while the average nucleotide identity (ANI) values were 78.85% and 79.63%, respectively. The DNA G+C content was measured to be 64.6 mol%. Moreover, the bacterium was found to contain polyhydroxyalkanoate (PHA) granules based on transmission electron microscopy, indicating its potential to produce bioplastic. Genome annotation revealed the presence of PHA synthase genes (phaC, phaR, phaP, and phaZ), and the biopolymer was identified as poly-3-hydroxybutyrate (PHB) based on nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) analyses. Using maltose as a carbon source, the strain produced PHB of up to 58.06% of its dry cell weight. Based on the phenotypic, chemotaxonomic, and phylogenetic characteristics, it has been determined that DM-R-R2A-13T represents a novel species belonging to the genus Massilia. As such, the name Massilia endophytica sp. nov. is proposed for this newly identified species. The type strain is DM-R-R2A-13T (= KCTC 92072T = GDMCC 1.2920T).
Collapse
Affiliation(s)
- Doeun Jeon
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Ki-Hyun Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jae Cheol Jeong
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Lu H, Song D, Deng T, Mei C, Xu M. Duganella vulcania sp. nov., Rugamonas fusca sp. nov., Rugamonas brunnea sp. nov. and Rugamonas apoptosis sp. nov., isolated from subtropical streams, and phylogenomic analyses of the genera Janthinobacterium, Duganella, Rugamonas, Pseudoduganella and Massilia. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (FT81WT, FT82W, FT107W, FT3ST, LX20WT and LX47WT) sharing high 16S rRNA gene sequence similarities with species of the genera
Janthinobacterium
(97.0–98.3 %),
Duganella
(96.3–98.8 %),
Rugamonas
(97.8–98.6 %),
Pseudoduganella
(96.8–97.5 %) and
Massilia
(94.5–98.6 %) were isolated from subtropical streams in PR China. The phylogenetic trees reconstructed using the 16S rRNA gene sequences indicated that the species of above five genera often mix together, indicating that the taxonomic statuses of some species were questionable. Phylogenomic reconstruction based on 369 single-copy orthologous clusters indicated that the species of the genus
Janthinobacterium
form a distinct cluster, strains FT81WT, FT82W and FT107W form a tight cluster with the species of the genus
Duganella
, and strains FT3ST, LX20WT and LX47WT form a tight cluster with the species of genus
Rugamonas
, and the species of genus
Pseudoduganella
form a tight cluster with
Massilia guangdongensis
,
Massilia ginsengisoli
,
Massilia rivuli
,
Massilia namucuonensis
,
Massilia aquatica
sensu Lu et al.,
Massilia buxea
,
Massilia armeniaca
,
Massilia plicata
,
Massilia flava
,
Massilia lurida
,
Massilia dura
,
Massilia lutea
,
Massilia umbonata
,
Massilia albidiflava
and
Massilia violacea
. It should be noted that
Massilia aquatica
Lu et al. 2020 non
Massilia aquatica
Holochová et al. 2020 is a later homonym and an illegitimate name. The GTDB Release 202 also supported the proposal that
M. guangdongensis
,
M. ginsengisoli
,
M. rivuli
,
M. namucuonensis
,
M. aquatica
sensu Lu et al.,
M. buxea
,
M. armeniaca
,
M. plicata
,
M. flava
,
M. lurida
,
M. dura
,
M. lutea
,
M. umbonata
,
M. albidiflava
and
M. violacea
should be transferred into the genus
Pseudoduganella
. The calculated pairwise orthologous average nucleotide identity by usearch (OrthoANIu) values were between 95.0 % and 95.6 % among strains FT81WT, FT82W and FT107W, but were less than 91.5 % among strains FT3ST, LX20WT, LX47WT and other related strains. Combining the results of phylogenomic analyses, phenotypic, biochemical and genotypic characteristics, strains FT81WT, FT82W and FT107W should represent a novel species of the genus
Duganella
, and strains FT3ST, LX20WT and LX47WT should represent three novel species of the genus
Rugamonas
, for which the names Duganella vulcania sp. nov. (type strain FT81WT=GDMCC 1.1679T =KACC 21471T), Rugamonas fusca sp. nov. (type strain FT3ST=GDMCC 1.1907T =KACC 21952T), Rugamonas brunnea sp. nov. (type strain LX20WT=GDMCC 1.1911T =KACC 21956T) and Rugamonas apoptosis sp. nov. (type strain LX47WT=GDMCC 1.1914T =KACC 21959T) are proposed.
Collapse
Affiliation(s)
- Huibin Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, PR China
- Yunnan Key Laboratory of Plateau Geographical Process and Environmental Changes, School of Tourism and Geography, Yunnan Normal University, Kunming, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
| | - Da Song
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Tongchu Deng
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Chengfang Mei
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, PR China
| |
Collapse
|
3
|
Yang R, Zhou D, Wang Q, Peng W, Gong W, Zhao M, Ji A, Wang X, Yan L, Lv J, Sheng J. Massilia puerhi sp. nov., isolated from soil of Pu-erh tea cellar. Int J Syst Evol Microbiol 2021; 71. [PMID: 34499597 DOI: 10.1099/ijsem.0.004992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-negative, yellow-pigmented, non-spore-forming rod, aerobic, motile bacterium, designated SJY3T, was isolated from soil samples collected from a Pu-erh tea cellar in Bolian Pu-erh tea estate Co. Ltd. in Pu'er city, Yunnan, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Massilia. The closest phylogenetic relative was Massilia arenae CICC 24458T (99.5 %), followed by M. timonae CCUG45783T (97.9 %), M. oculi CCUG43427AT (97.8 %), and M. aurea DSM 18055T (97.8 %). The major fatty acids were C16 : 0 and C16 : 1 ω7c and/or C16 : 1 ω6c. The major respiratory quinone was ubiquinone Q-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Genome sequencing revealed a genome size of 5.97 M bp and a G+C content of 65.4 mol%. Pairwise determined whole genome average nucleotide identity (gANI) values and digital DNA-DNA hybridization (dDDH) values were all below the threshold. Although the 16S rRNA gene similarity of stain SJY3T and Massilia arenae CICC 24458T was more than 99 %, the gANI, dDDH values and genomic tree clearly indicated that they were not of the same species. In summary, strain SJY3T represents a new species, for which we propose the name Massilia puerhi sp. nov. with the type strain SJY3T (=CGMCC 1.17158T=KCTC 82193T).
Collapse
Affiliation(s)
- Ruijuan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - De Zhou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qiaomei Wang
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Wenshu Peng
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Wanying Gong
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Miaomiao Zhao
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Aibing Ji
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China.,College of Science, Yunnan Agricultural University, Kunming 650201, PR China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, PR China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, Yunnan 665000, PR China.,Pu'er Institute of Pu-erh Tea, Pu'er, Yunnan 665000, PR China
| | - Jie Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, PR China
| |
Collapse
|
4
|
Yang E, Zhao M, Li S, Wang Y, Sun L, Liu J, Wang W. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 69:2135-2141. [PMID: 31140962 DOI: 10.1099/ijsem.0.003449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated SODT, with Gram-stain-negative and motile rod-shaped cells, was isolated from soil in Hefei, PR China, and was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SODT belonged to the genus Massilia and showed the highest similarities to Massilia violaceinigra B2T (99.3 %), followed by Massilia glaciei B448-2T (98.7 %), Massilia eurypsychrophila CGMCC 1.12828T (98.6 %) and Rugamonas rubra CCM3730T (97.8 %). Average nucleotide identity and digital DNA-DNA hybridization values between genome sequences of strain SODT and the closely related species ranged from 77.1 to 89.3% and from 22.2 to 34.7 %. The DNA G+C content of strain SODT was 65.4 mol%. Strain SODT contained Q-8 as the major ubiquinone and the dominant fatty acids were summed feature 3 (C16 : 1ω7c and/or C15 : 0iso 2-OH; 58.5 %), C16 : 0 (26.8 %) and C18 : 1ω7c (5.0 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. On the basis of the evidence presented in this study, strain SODT represents a novel species of the genus Massilia, for which the name Massiliaatriviolacea sp. nov. is proposed. The type strain is SODT (=KCTC 62720T=LMG 30840T).
Collapse
Affiliation(s)
- Endong Yang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Meiyi Zhao
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Shanshan Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yanxiang Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Leni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Jing Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Weiyun Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
5
|
Sun LN, Yang ED, Cui DX, Ni YW, Wang YB, Sun DD, Wang WY. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67:4390-4396. [PMID: 28933315 DOI: 10.1099/ijsem.0.002301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped and motile bacterial strain, designated A9T, was isolated from the surface of rock collected from the shore of Nvshan lake in Mingguang, Anhui province, China. Phylogenetic analysis based on 16S rDNA sequence data showed that strain A9T was affiliated with the genus Massilia and showed the highest sequence similarities to Massilia plicata KCTC 12344T (98.8 %) and Massilia lurida CGMCC 1.10822T (97.9 %). The major fatty acids (>5 %) were summed feature 3 (C16 : 1ω7c and/or C15 : 0 iso 2-OH), C16 : 0 and C18 : 1ω7c. Strain A9T contained Q-8 as the predominant ubiquinone and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid as the predominant polar lipids. The DNA G+C content was 69.9 mol%. Mean DNA-DNA relatedness values between strain A9T and its closest phylogenetic relatives, M. plicata KCTC 12344T and M. lurida CGMCC 1.10822T, were 38.8 % and 23.23 %, respectively. On the basis of the results obtained in this study, strain A9T is considered to represent a novel species of the genus Massilia, for which the name Massilia buxea sp. nov. is proposed. The type strain is A9T (=DSM 103547T=CGMCC 1.15931T=KCTC 52429T).
Collapse
Affiliation(s)
- Le-Ni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - En-Dong Yang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Dan-Xi Cui
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Ye-Wen Ni
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yu-Bo Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Dong-Dong Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei-Yun Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
6
|
Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67:2514-2519. [PMID: 28853679 DOI: 10.1099/ijsem.0.001916] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest similarities with Massilia putida6 NM-7T (98.67 %), Massilia kyonggiensis TSA1T (98.28 %), and Massilia norwichensis NS9T (98.07 %), respectively. The DNA G+C content was 67.72 mol% and DNA-DNA hybridization showed low relatedness values (less than 47 %) between strain 12-OD1T and other phylogenetically related species of the genus Massilia. The predominant isoprenoid quinone was Q-8 and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were C17 : 0 cyclo (25.4 %), C16 : 0 (23.4 %) and summed feature 3 (C16 : 1ω7c and/or C16 : 1 ω6c) (22.5 %), which differentiates it from close relatives within the genus Massilia. Combined genetic, physiological and biochemical properties indicate that strain 12-OD1T is a novel species of the genus Massilia, for which the name Massilia phosphatilytica sp. nov., is proposed, with the type strain 12-OD1T (=CCTCC AB 2016251T=LMG 29956T=KCTC 52513T).
Collapse
Affiliation(s)
- Bang-Xiao Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Fang Bi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiu-Li Hao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Guo-Wei Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
7
|
Cho J, Kim KH, Kim JO, Hong JS, Jeong SH, Lee K. Massilia varians Isolated from a Clinical Specimen. Infect Chemother 2017; 49:219-222. [PMID: 28608658 PMCID: PMC5620389 DOI: 10.3947/ic.2017.49.3.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
We report a case of Massilia varians isolated from a deep finger wound following orthopedic surgery on an immunocompetent patient. The bacterium was identified by 16S rDNA sequence analysis. This is the first case of M. varians isolated from a clinical specimen since the first report in 2008.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keon Han Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Sung Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Lee H, Kim DU, Park S, Yoon JH, Ka JO. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie van Leeuwenhoek 2017; 110:751-758. [DOI: 10.1007/s10482-017-0845-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
|
9
|
Altankhuu K, Kim J. Massilia pinisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:3669-3674. [DOI: 10.1099/ijsem.0.001249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Khulan Altankhuu
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
10
|
Guo B, Liu Y, Gu Z, Shen L, Liu K, Wang N, Xing T, Liu H, Zhou Y, Li J. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088-4093. [PMID: 27432318 DOI: 10.1099/ijsem.0.001315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped, motile bacterium, strain B1555-1T, was isolated from an ice core drilled from Ulugh Muztagh Glacier, China. The optimum growth temperature of strain B1555-1T was 15 °C and optimum pH was 7. The major fatty acids of strain B1555-1T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The predominant respiratory quinone was Q-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain B1555-1T was 66.0 mol%. In 16S rRNA gene sequence comparisons, strain B1555-1T was affiliated to the genus Massilia and shared 98.30 and 97.13 % similarity with Massilia eurypsychrophila B528-3T and Massilia niabensis 5420S-26T, respectively. The results of DNA-DNA hybridization revealed that strain B1555-1T showed 49.8 % relatedness with M. eurypsychrophila B528-3T and 38.5 % with M. niabensis 5420S-26T. Based on the genotypic and phenotypic evidence presented in this study, strain B1555-1T represents a novel species of the genus Massilia, for which the name Massilia psychrophila sp. nov. is proposed. The type strain is B1555-1T (=CGMCC 1.15196T=JCM 30813T).
Collapse
Affiliation(s)
- Bixi Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yongqin Liu
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, PR China.,Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhengquan Gu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Liang Shen
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Keshao Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ningliang Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, PR China.,State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 73000, PR China
| | - Tingting Xing
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiule Li
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
11
|
Embarcadero-Jiménez S, Peix Á, Igual JM, Rivera-Orduña FN, Tao Wang E. Massilia violacea sp. nov., isolated from riverbank soil. Int J Syst Evol Microbiol 2016; 66:707-711. [DOI: 10.1099/ijsem.0.000776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Salvador Embarcadero-Jiménez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain
| | - José Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain
| | - Flor N. Rivera-Orduña
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Shen L, Liu Y, Gu Z, Xu B, Wang N, Jiao N, Liu H, Zhou Y. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124-2129. [DOI: 10.1099/ijs.0.000229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain B528-3T, a Gram-stain-negative, rod-shaped, aerobic, facultatively psychrophilic bacterium with polar flagella, was isolated from an ice core drilled from Muztagh Glacier, Xinjiang, China. The novel isolate was classified into the genus Massilia. The 16S rRNA gene sequence of the novel isolate shares a pairwise similarity of less than 97 % with those of all the type strains of the genus Massilia. The major fatty acids of strain B528-3T were summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH) (57.31 %), C16:0 (11.46 %) and C18:1ω7c (14.72 %). The predominant isoprenoid quinone was Q-8. The DNA G+C content was 62.2 mol% (T
m). The major polar lipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. From the genotypic and phenotypic data, it is evident that strain B528-3T represents a novel species of the genus Massilia, for which the name Massilia eurypsychrophila sp. nov. is proposed. The type strain is B528-3T ( = JCM 30074T = CGMCC 1.12828T).
Collapse
Affiliation(s)
- Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences
| | - Zhengquan Gu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences
| | - Ninglian Wang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Hongcan Liu
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- Institute of Microbiology, China General Microbiological Culture Collection Center, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
13
|
Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014; 65:56-64. [PMID: 25273514 DOI: 10.1099/ijs.0.068296-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped and motile bacterial isolate, designated strain NS9(T), isolated from air of the Sainsbury Centre for Visual Arts in Norwich, UK, was subjected to a polyphasic taxonomic study including phylogenetic analyses based on partial 16S rRNA, gyrB and lepA gene sequences and phenotypic characterization. The 16S rRNA gene sequence of NS9(T) identified Massilia haematophila CCUG 38318(T), M. niastensis 5516S-1(T) (both 97.7% similarity), M. aerilata 5516S-11(T) (97.4%) and M. tieshanensis TS3(T) (97.4%) as the next closest relatives. In partial gyrB and lepA sequences, NS9(T) shared the highest similarities with M. haematophila CCUG 38318(T) (94.5%) and M. aerilata 5516-11(T) (94.3%), respectively. These sequence data demonstrate the affiliation of NS9(T) to the genus Massilia. The detection of the predominant ubiquinone Q-8, a polar lipid profile consisting of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and a polyamine pattern containing 2-hydroxyputrescine and putrescine were in agreement with the assignment of strain NS9(T) to the genus Massilia. Major fatty acids were summed feature 3 (C16:1ω7c and/or iso-C15 : 0 2-OH), C16:0, C18: 1ω7c and C10:0 3-OH. Dissimilarities in partial lepA and gyrB gene sequences as well as results from DNA-DNA hybridizations demonstrate that strain NS9(T) is a representative of an as-yet undescribed species of the genus Massilia that is also distinguished from its close relatives based on physiological and biochemical traits. Hence, we describe a novel species, for which we propose the name Massilia norwichensis sp. nov., with the type strain NS9(T) ( = CCUG 65457(T) =LMG 28164(T)).
Collapse
Affiliation(s)
- Ivana Orthová
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - René Kaden
- Department of Medical Sciences, Clinical Bacteriology, University of Uppsala, SE-75185 Uppsala, Sweden
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| |
Collapse
|
14
|
Rodríguez-Díaz M, Cerrone F, Sánchez-Peinado M, SantaCruz-Calvo L, Pozo C, López JG. Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol 2013; 64:131-137. [PMID: 24030691 DOI: 10.1099/ijs.0.049874-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated strain LP01(T), was isolated from a laboratory-scale microcosm packed with a mixture of soil and sewage sludge compost designed to study the evolution of microbial biodiversity over time. The bacterial strain was selected for its potential ability to store polyhydroxyalkanoates (PHAs) as intracellular granules. The cells were aerobic, Gram-stain-negative, non-endospore-forming motile rods. Phylogenetically, the strain was classified within the genus Massilia, as its 16S rRNA gene sequence had similarity of 99.2 % with respect to those of Massilia albidiflava DSM 17472(T) and M. lutea DSM 17473(T). DNA-DNA hybridization showed low relatedness of strain LP01(T) to the type strains of other, phylogenetically related species of the genus Massilia. It contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acid(s). It was found to contain small amounts of the fatty acids C18 : 0 and C14 : 0 2-OH, a feature that served to distinguish it from its closest phylogenetic relatives within the genus Massilia. The DNA G+C content was 66.0 mol%. Phylogenetic, phenotypic and chemotaxonomic data obtained in this study suggest that strain LP01(T) represents a novel species of the genus Massilia, for which the name Massilia umbonata sp. nov. is proposed. The type strain is LP01(T) ( = CECT 7753(T) = DSM 26121(T)).
Collapse
Affiliation(s)
- Marina Rodríguez-Díaz
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstrasse 1, 28359 Bremen, Germany
- Department of Microbiology, University of Granada, Granada, Spain
| | | | | | | | - Clementina Pozo
- Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, University of Granada, Granada, Spain
| | - Jesús González López
- Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|