1
|
Wang ML, Fu GY, Xu XW. Flagellimonas baculiformis sp. nov. and Flagellimonas crocea sp. nov., isolated from surface seawater of the Pacific Ocean. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568198 DOI: 10.1099/ijsem.0.006316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Two Gram-negative, non-spore-forming, non-motile, non-flagellated bacteria, designated strains D6T and DH64T, were isolated from surface water of the Pacific Ocean. For strain D6T, growth occurred at 10-40 °C, pH 5.5-9.0 and in the presence of 0-8.0 % NaCl (w/v). For strain DH64T, growth occurred at 10-40 °C, pH 5.5-8.5 and in the presence of 0.5-8.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains D6T and DH64T both belonged to the genera Flagellimonas, with the highest sequence identities to Flagellimonas taeanensis JCM 17757T (98.2 %) and Flagellimonas marinaquae JCM 11811T (98.6 %), respectively. The 16S rRNA gene sequence identity between strains D6T and DH64T was 95.9 %. The average amino acid identity and digital DNA-DNA hybridization values between the two strains and the nearest phylogenetic neighbours were 66.7-93.3 % and 16.1-38.5 %, respectively. The major respiratory quinone of both strains was menaquinone-6. The major polar lipid was phosphatidylethanolamine. The major fatty acids were identified similarly as iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. The genomic G+C contents of strains D6T and DH64T were determined to be 45.5 and 42.6 mol%, respectively. The combined genotypic and phenotypic data show that the strains represent two novel species within genera Flagellimonas, for which the names Flagellimonas baculiformis sp. nov. and Flagellimonas crocea sp. nov. are proposed, with type strains D6T (=MCCC M28982T=KCTC 92604T) and DH64T (=MCCC M28986T=KCTC 92975T).
Collapse
Affiliation(s)
- Ming-Lei Wang
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 316021, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 316021, PR China
| | - Xue-Wei Xu
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 316021, PR China
| |
Collapse
|
2
|
Novoa EAM, Deshmukh UB, Oren A. Reclassification of Allomuricauda and Muricauda species as members of the genus Flagellimonas Bae et al. 2007 and emended description of the genus Flagellimonas. Int J Syst Evol Microbiol 2024; 74. [PMID: 38421264 DOI: 10.1099/ijsem.0.006286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The recently proposed genus Allomuricauda Deshmukh and Oren 2023 is illegitimate because it includes the type species of the genera Flagellimonas Bae et al. 2007 and Spongiibacterium Yoon and Oh 2012, contravening Rule 51b(1) of the International Code of Nomenclature of Prokaryotes. As Flagellimonas Bae et al. 2007 is the earlier described genus, we here reclassify 36 species earlier described as belonging to the illegitimate genus Muricauda as species of Flagellimonas. We also present an emended description of the genus Flagellimonas.
Collapse
Affiliation(s)
- Eduardo A Molinari Novoa
- Chess Consulting & Project, Lima 15039, and 'La Molina' National Agrarian University, Lima 15024, Peru
| | - Umakant Bhoopati Deshmukh
- Institution of Higher Learning, Research and Specialized Studies Centre, Department of Botany, Janata Mahavidyalaya, Chandrapur 442 401, Maharashtra, India
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Deshmukh UB, Oren A. Proposal of Allomuricauda gen. nov. and Allofranklinella gen. nov. as replacement names for the illegitimate prokaryotic generic names Muricauda and Franklinella, respectively. Int J Syst Evol Microbiol 2023; 73. [PMID: 37747448 DOI: 10.1099/ijsem.0.006023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The prokaryotic generic names Muricauda Bruns et al. 2001 and Franklinella Bernard et al. 2022 are illegitimate because they are later homonyms of the genus names Muricauda Small 1903 (synonym of Arisaema; Tracheophyta - Liliopsida - Araceae) and Franklinella Stewart and Hendrix 1945 (a Devonian ostracod genus) and Franklinella Lenz 1973 (a Devonian brachiopod genus), respectively (Principle 2 and Rule 51b(4) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic names Allomuricauda and Allofranklinella, with type species Allomuricauda ruestringensis and Allofrankinella schreckenbergeri, respectively.
Collapse
Affiliation(s)
- Umakant Bhoopati Deshmukh
- Department of Botany, Institution of Higher Learning, Research and Specialized Studies Centre, Janata Mahavidyalaya, Chandrapur 442 401, Maharashtra, India
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Cao W, Deng X, Jiang M, Zeng Z, Chang F. Muricauda okinawensis sp. Nov. and Muricauda yonaguniensis sp. Nov., Two Marine Bacteria Isolated from the Sediment Core near Hydrothermal Fields of Southern Okinawa Trough. Microorganisms 2023; 11:1580. [PMID: 37375082 DOI: 10.3390/microorganisms11061580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Two strains, 81s02T and 334s03T, were isolated from the sediment core near the hydrothermal field of southern Okinawa Trough. The cells of both strains were observed to be rod-shaped, non-gliding, Gram-staining negative, yellow-pigmented, facultatively anaerobic, catalase and oxidase positive, and showing optimum growth at 30 °C and pH 7.5. The strains 81s02T and 334s03T were able to tolerate up to 10% and 9% (w/v) NaCl concentration, respectively. Based on phylogenomic analysis, the average nucleotide identity (ANI) and the digital DNA-DNA hybridization (dDDH) values between the two strains and the nearest phylogenetic neighbors of the genus Muricauda were in range of 78.0-86.3% and 21.5-33.9%, respectively. The strains 81s02T and 334s03T shared 98.1% 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 81.4-81.5% ANIb, 85.5-85.6% ANIm and 25.4% dDDH values calculated using whole genome sequences. The strains 81s02T and 334s03T shared the highest 16S rRNA gene sequence similarity to M. lutimaris SMK-108T (98.7%) and M. aurea BC31-1-A7T (98.8%), respectively. The major fatty acid of strains 81s02T and 334s03T were identified similarly as iso-C15:0, iso-C17:0 3-OH and iso-C15:1 G, and the major polar lipids of the both strains consisted of phosphatidylethanolamine and two unidentified lipids. The strains contained MK-6 as their predominant menaquinone. The genomic G+C contents of strains 81s02T and 334s03T were determined to be 41.6 and 41.9 mol%, respectively. Based on the phylogenetic and phenotypic characteristics, both strains are considered to represent two novel species of the genus Muricauda, and the names Muricauda okinawensis sp. nov. and Muricauda yonaguniensis sp. nov. are proposed for strains 81s02T (=KCTC 92889T = MCCC 1K08502T) and 334s03T (=KCTC 92890T = MCCC 1K08503T).
Collapse
Affiliation(s)
- Wenrui Cao
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xingyu Deng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mingyu Jiang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhigang Zeng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengming Chang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Wang D, Wu Y, Liu Y, Liu B, Gao Y, Yang Y, Zhang Y, Liu C, Huo Y, Tang A, Xu Y, Wei Y. Muricauda abyssi sp. nov., a marine bacterium isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748599 DOI: 10.1099/ijsem.0.005615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A Gram-stain-negative, non-motile and rod-shaped bacterium, designated as strain W52T, was isolated from deep seawater of the Mariana Trench and characterized phylogenetically and phenotypically. The strain could grow at 10-47 °C (optimum 32 °C), at pH 5.0-8.0 (optimum 6.0) and with 0-9% NaCl (optimum 3 %, w/v). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that W52T was related to members of the genus Muricauda and shared the highest identity with Muricauda oceani 501str8T (99.0 %), followed by Muricauda aquimarina JCM 11811T, Muricauda ruestringensis DSM 13258T, Muricauda oceanensis 40DY170T, Muricauda beolgyonensis KCTC 23501T and Muricauda zhangzhouensis 12C25T with 97.0-98.8 % sequence similarity. 16S rRNA gene sequence identities between W52T and other members of the genus Muricauda were below 97.0 %. The major respiratory quinone was MK-6. The polar lipids were phosphatidylethanolamine (PE), one unidentified aminolipid and three unidentified lipids. The strain had iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1G as the major fatty acids. The G+C content of the genomic DNA was 41.7 %. The combined genotypic and phenotypic data indicated that strain W52T represents a novel species of the genus Muricauda, for which the name Muricauda abyssi sp. nov. is proposed, with the type strain W52T (=MCCC 1K05111T= KCTC 82315T).
Collapse
Affiliation(s)
- Di Wang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yong Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yang Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuxin Gao
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, PR China
| | - Yuxue Yang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yan Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yingzhe Huo
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Aoyu Tang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yunping Xu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
6
|
Liang J, Yin Q, Zheng X, Wang Y, Song ZM, Zhang Y, Hao L, Xu Y. Muricauda onchidii sp. nov., isolated from a marine invertebrate from South China Sea, and transfers of Flagellimonas algicola, Flagellimonas pacifica and Flagellimonas maritima to Muricauda algicola comb. nov., Muricauda parva nom. nov. and Muricauda aurantiaca nom. nov., respectively, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2021; 71. [PMID: 34516364 DOI: 10.1099/ijsem.0.004982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An aerobic, Gram-stain-negative, rod-shaped and non-motile strain (XY-359T) was isolated from the mouth of a marine invertebrate Onchidium species from the South China Sea. It grew at pH 6.0-8.5 (optimum, pH 7.5), at 15-37 °C (optimum, 30 °C) and in the presence of 0.5-4.5 % (w/v) NaCl (optimum, 2.5 %). It could not hydrolyse Tweens 20, 40, 60 or 80 and no flexirubin-type pigments were produced. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid, six unidentified phospholipids and two unidentified polar lipids. The major fatty acids were iso-C17:0 3-OH, iso-C15:1 G and iso-C15:0 3-OH. The respiratory quinone was MK-6. Strain XY-359T showed the greatest degree of 16S rRNA sequence similarity to Flagellimonas algicola AsT0115T (96.54 %), followed by Muricauda flava DSM 22638T (96.27 %). Phylogenetic analysis based on 16S rRNA gene sequences and 31 core genes indicated that strain XY-359T belongs to the genus Muricauda. The genome size of strain XY-359T was 4 207 872 bp, with 39.1 mol% of DNA G+C content. The average nucleotide identity and digital DNA-DNA hybridization values between strain XY-359T and F. algicola AsT0115T were 74.58 % and 18.5 %, respectively, and those between strain XY-359T and M. flava DSM 22638T were 74.2 % and 18.3 %. The combined phenotypic, chemotaxonomic and phylogenetic data suggest that strain XY-359T represents a novel species of the genus Muricauda, for which the name Muricauda onchidii sp. nov. is proposed. The type strain is XY-359T (=MCCC 1K03658T =KCTC 72218T). Moreover, based on the proposal of nesting Spongiibacterium and Flagellimonas within Muricauda by García (Validation List No. 193) and the analyses of phylogenetic trees and average amino acid identities in this study, the transfers of F. algicola, F. pacifica and F. maritima to the genus Muricauda as Muricauda algicola comb. nov., Muricauda parva nom. nov. and M. aurantiaca nom. nov., respectively, are proposed, with an emended description of the genus Muricauda.
Collapse
Affiliation(s)
- Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Qi Yin
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.,School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoli Zheng
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhi-Man Song
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
7
|
Chen Y, Hu Z, Wang H. Muricauda amphidinii sp. nov., a novel marine bacterium isolated from the phycosphere of dinoflagellate Amphidinium carterae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33734957 DOI: 10.1099/ijsem.0.004764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped and non-motile bacterium was isolated from a liquid culture of dinoflagellate Amphidinium carterae and further designated as LMIT004T. Optimal growth was observed at 25 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Oxidase and catalase were positive. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LMIT004T showed high similarities to type strains Muricauda nanhaiensis SM17004T (96.77 %) and Muricauda aquimarina JCM11811T (95.60 %) but formed a separate branch in the genus Muricauda. The G+C content of strain LMIT004T was 39.0 mol%. The dominant fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids mainly contained phosphatidylethanolamine, five unidentified phospholipids and five unidentified polar lipids. The sole respiratory quinone was menaquinone-6 (MK-6). The draft genome of the type strain was 3.88 Mbp. The average nucleotide identity values between strain LMIT004T and the two reference strains M. nanhaiensis SM17004T and M. aquimarina JCM11811T were 77.47 and 73.49 %, respectively. Based on the polyphasic analysis, strain LMIT004T is suggested to represent a novel specie in the genus of Muricauda, for which the name Muricauda amphidinii sp. nov. is proposed. The type strain is LMIT004T (=CICC 24871T=KCTC 72948T).
Collapse
Affiliation(s)
- Yuerong Chen
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, PR China
| | - Zhong Hu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, PR China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, PR China.,Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, PR China
| | - Hui Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, PR China.,Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, PR China
| |
Collapse
|
8
|
Zhu S, Xue Z, Huang Y, Chen X, Ren N, Chen T, Chen Y, Yang J, Chen J. Muricauda sediminis sp. nov., isolated from western Pacific Ocean sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 33709904 DOI: 10.1099/ijsem.0.004757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, designated strain 40Bstr401T, was isolated from a sediment sample collected from the western Pacific Ocean. Analysis of its 16S rRNA gene sequence revealed that strain 40Bstr401T belongs to the genus Muricauda and is closely related to type strains Muricauda antarctica Ar-22T (98.2 %), Muricauda taeanensis 105T (98.2 %) and Muricauda beolgyonensis BB-My12T (97.4 %). The average nucleotide identity values for 40Bstr401T with M. antarctica Ar-22T and M. taeanensis 105T are 79.3 % and 78.8 %, respectively. The in silico DNA-DNA hybridization values between strain 40Bstr401T and M. antarctica Ar-22T and M. taeanensis 105T are 26.7 and 26.6 %, respectively. The major isoprenoid quinone of 40Bstr401T is MK-6, and iso-C17 : 0 3-OH and iso-C15 : 0 are the dominant cellular fatty acids. The major polar lipids are phosphatidylethanolamine, four unidentified amino lipids and two unidentified lipids. The G+C content of the genomic DNA is 42.9 mol%. Its phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, indicate that strain 40Bstr401T can be differentiated from closely related species. Therefore, we propose strain 40Bstr401T represents a novel species in the genus Muricauda, for which the name Muricauda sediminis sp. nov. is suggested. The type strain is 40Bstr401T (=MCCC 1K04568T=KCTC 82139T).
Collapse
Affiliation(s)
- Sidong Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Zehao Xue
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yizhe Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xiunuan Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Na Ren
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Ting Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yong Chen
- Institute of Respiratory and Disease, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Jifang Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jigang Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| |
Collapse
|
9
|
Guo LL, Wu D, Sun C, Cheng H, Xu XW, Wu M, Wu YH. Muricauda maritima sp. nov., Muricauda aequoris sp. nov. and Muricauda oceanensis sp. nov., three marine bacteria isolated from seawater. Int J Syst Evol Microbiol 2020; 70:6240-6250. [DOI: 10.1099/ijsem.0.004522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three Gram-stain-negative, non-motile, rod-shaped strains, designated 72T, NH166T and 40DY170T, were isolated from seawater samples of the West Pacific Ocean, South China Sea and West Pacific Ocean, respectively. The 16S rRNA gene sequence similarity results revealed that strains 72Tand NH166T were most closely related to
Muricauda antarctica
Ar-22T,
Muricauda taeanensis
JCM 17757T,
Muricauda beolgyonensis
KCTC 23501T,
Muricauda lutimaris
KCTC 22173T and
Muricauda hadalis
MT-229T with 97.2–98.0% sequence similarity. 16S rRNA gene sequence analysis also indicated that strain 40DY170T was most closely related to
Muricauda ruestringensis
DSM 13258T,
Muricauda aquimarina
JCM 11811T,
Muricauda lutimaris
KCTC 22173T and
Muricauda oceani
501str8T with 97.6–98.1% sequence similarity. The 16S rRNA gene sequence similarity values among strains 72T, NH166T and 40DY170T were 96.5–99.2%. Phylogenetic analyses indicated that three new isolates represented three novel species by forming two distinctive lineages within the genus
Muricauda
. The DNA G+C contents of strain 72T, NH166T and 40DY170T were 43.4, 43.4 and 42.4 mol%, respectively. The average nucleotide identity and in silico DNA–DNA hybridization values between strains 72T, NH166T, 40DY170T and the reference strains were 76.5–93.5% and 19.2–53.5%, respectively. The sole respiratory quinone in all strains was menaquinone-6. Their major fatty acids were iso-C17:0 3-OH, iso-C15:0 and iso-C15 : 1 G. The major polar lipids of strains 72T and NH166T were phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The major polar lipids of strain 40DY170T were phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified lipids. On the basis of their distinct taxonomic characteristics, the three isolates represent three novel species of the genus
Muricauda
, for which the names Muricauda maritima sp. nov. (type strain 72T=KCTC 62229T=MCCC 1K03350T), Muricauda aequoris sp. nov. (NH166T=KCTC 62228T=MCCC 1K03449T) and Muricauda oceanensis sp. nov. (40DY170T=KCTC 72200T=MCCC 1K03569T) are proposed.
Collapse
Affiliation(s)
- Li-Li Guo
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Dildar Wu
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, PR China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Hong Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| |
Collapse
|
10
|
Vizzotto CS, Peixoto J, Green SJ, Lopes FAC, Ramada MHS, Pires Júnior OR, Pinto OHB, Tótola MR, Thompson FL, Krüger RH. Muricauda brasiliensis sp. nov., isolated from a mat-forming cyanobacterial culture. Braz J Microbiol 2020; 52:325-333. [PMID: 33155174 DOI: 10.1007/s42770-020-00400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022] Open
Abstract
Strain K001 was isolated from a cyanobacterial culture derived from Abrolhos, a reef bank microbial mat (South Atlantic Ocean-Brazil). Cells of K001 are Gram stain-negative, catalase and oxidase-positive, non-motile, rod-shaped, and with or without appendages. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain K001 belongs to the genus Muricauda. The highest strain K001 16S rRNA gene identity, ANI, and dDDH, respectively, are with M. aquimarina (98.90%, 79.23, 21.60%), M. ruestringensis (98.20%, 80.82, 23.40%), and M. lutimaris (97.86%, 79.23, 22.70%). The strain grows at 15-37 °C and between 0.5 and 10% NaCl. The major fatty acids of strain K001 are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The polar lipids are represented by phosphatidylethanolamine, three unidentified aminolipids, and three unidentified polar lipids. The major respiratory quinone is MK-6. The G+C content of the DNA of strain K001 is 41.62 mol%. Based on polyphasic analysis of strain K001, it was identified as a novel representative of the genus Muricauda and was named Muricauda brasiliensis sp. nov. The type strain is K001 (=CBMAI 2315T = CBAS 752T).
Collapse
Affiliation(s)
- Carla Simone Vizzotto
- Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Brasília, DF, Brazil.,Department of Civil and Environmental Engineering, University of Brasília, Brasília, DF, Brazil
| | - Julianna Peixoto
- Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Brasília, DF, Brazil
| | - Stefan Joshua Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Fabyano Alvares C Lopes
- Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Brasília, DF, Brazil.,Laboratory of Microbiology, Federal University of Tocantins, Porto Nacional, TO, Brazil
| | - Marcelo Henrique S Ramada
- Graduate Program in Genomics Science and Biotechnology, Catholic University of Brasilia, Brasilia, DF, Brazil.,Graduate Program in Gerontology, Catholic University of Brasilia, Brasilia, DF, Brazil
| | - Osmindo R Pires Júnior
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, 70910-900, DF, Brazil
| | - Otávio Henrique B Pinto
- Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Brasília, DF, Brazil
| | - Marcos Rogério Tótola
- Laboratories of the Department of Microbiology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabiano Lopes Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Henrique Krüger
- Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Kim D, Yoo Y, Khim JS, Yang D, Pathiraja D, Choi IG, Kim JJ. Muricauda ochracea sp. nov., isolated from a tidal flat in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:4555-4561. [DOI: 10.1099/ijsem.0.004312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellowish-brown-coloured bacterium, designated strain JGD-17T, was isolated from a tidal flat of Janggu-do, Garorim bay, Taean-gun, Chungcheongbuk-do, Republic of Korea. Cells were Gram-stain-negative, aerobic, non-flagellated and long-rod-shaped. Growth was observed at 20–45 °C (optimum, 25–30 °C), at pH 6.0–10.0 (9.0) and with 1–5 % (w/v) NaCl (1–3 %). Results of 16S rRNA gene sequence analysis indicated that strain JGD-17T was closely related to
Muricauda nanhaiensis
SM1704T (96.1 %),
Muricauda olearia
CL-SS4T (95.0 %),
Muricauda beolgyonensis
BB-My12T (94.9 %),
Muricauda marina
H19-56T (94.7 %) and
Muricauda indica
3PC125-7T (94.5 %). The ranges of values for the average nucleotide identity and digital DNA–DNA hybridization analyses with related strains were 71.3–74.1 % and 16.9–18.2 %. The genomic DNA G+C content was 41.1 mol%. Phylogenetic analysis using the neighbour-joining method showed that strain JGD-17T formed a clade with
Muricauda nanhaiensis
SM1704T,
Muricauda lutaonensis
CC-HSB-11T,
Muricauda lutea
CSW06T and
Muricauda pacifica
SM027T. The major fatty acids were iso-C15 : 0 (26.9 %), iso-C15 : 1 G (19.5 %) and iso-C17 : 0 3-OH (12.7 %). The predominant respiratory quinone was menaquinone-6. The polar lipids were phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and two unidentified lipids. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain JGD-17T represents a novel species within the genus
Muricauda
, for which the name Muricauda ochracea sp. nov. is proposed. The type strain is JGD-17T (=KCTC 72732T=KACC 21486T=JCM 33817T).
Collapse
Affiliation(s)
- Dongjun Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science and Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Dongmin Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Duleepa Pathiraja
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Gao Y, Pei J, Cao J, Xie Z, Liu R, Wang L, Wei Y, Fang J. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis. Int J Syst Evol Microbiol 2020; 70:4315-4320. [DOI: 10.1099/ijsem.0.004288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel marine Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, designated as strain MT-229T, was isolated from the deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 30 °C (ranging 10–40 °C), pH 6 (ranging 3–11) and with 11 % (w/v) NaCl (ranging 0–17 %). Strain MT-229T was a piezophile, growing optimally at 20 MPa (range 0.1–70 MPa). The nearest phylogenetic neighbours were
Muricauda antarctica
CGMCC 1.2174T and
Muricauda taeanensis
JCM 17757T with 16S rRNA gene similarity of 98.7 %. The sole respiratory quinone was menaquinone-6 (MK-6). The major polar lipids were phosphatidylethanolamine (PE), two unidentified aminolipids (AL) and ten unidentified lipids. The major fatty acids of strain MT-229T were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The G+C content of the genomic DNA was 45.6 mol%. The combined genotypic and phenotypic data indicated that strain MT-229T represents a novel species of the genus
Muricauda
, for which the name Muricauda hadalis sp. nov. is proposed, with the type strain MT-229T (=DSM 109894T=MCCC 1K04201T). In addition, the whole-genome-based comparisons revealed that the type strains of
Muricauda antarctica
and Muricauda teanensis belong to a single species. It is, therefore, proposed that
M. antarctica
be recognized as a heterotypic synonym of M. teanensis.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuxin Gao
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiahao Pei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
13
|
Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839-3844. [DOI: 10.1099/ijsem.0.004241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, designated strain 501str8T, was isolated from a sediment sample collected from the East Pacific Ocean. 16S rRNA gene sequence analysis revealed that strain 501str8T belonged to the genus
Muricauda
, with closely related type strains
Muricauda aquimarina
SW-63T (98.5 %),
Muricauda lutimaris
SMK-108T (98.3 %) and
Muricauda ruestringensis
B1T (97.9 %). Up-to-date bacterial core gene set analysis revealed that strain 501str8T represented one independent lineage with
M. aquimarina
SW-63T. The average nucleotide identity values of strain 501str8T with
M. aquimarina
SW-63T and
M. lutimaris
SMK-108T were 80.2 and 81.3 %, respectively. In silico DNA–DNA hybridization values between strain 501str8T and
M. aquimarina
SW-63T and
M. lutimaris
SMK-108T were 22.8 and 32.9 %, respectively. The predominant isoprenoid quinone was menaquinone-6, and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G were the dominant cellular fatty acids. The G+C content of the genomic DNA was 42.8 mol%. Differential phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, revealed that strain 501str8T could be differentiated from closely related species. Therefore, we propose that strain 501str8T represents a novel species of the genus
Muricauda
, for which the name Muricauda oceani sp. nov. is suggested. The type strain is 501str8T (=JCM 33902T=MCCC 1K04567T).
Collapse
|
14
|
Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:1666-1671. [DOI: 10.1099/ijsem.0.003953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-motile, long, straight-rod and non-flagellated marine bacterium strain, designated SCR12T, was isolated from the gill of a shrimp collected in the Tangyin hydrothermal field of the Okinawa Trough. The growth temperature was in the range of 16–40 °C and the optimum temperature was 37 °C. Optimal growth occurred at pH 6.5 and in the presence of 3 % (w/v) NaCl. The predominant isoprenoid quinone of strain SCR12T was menaquinone-6 (MK-6). The predominant fatty acids (>10 %) were iso-C15 : 0 (44.2 %), iso-C15 : 1 G (19.0 %) and iso-C17 : 0 3-OH (12.1 %). The major polar lipids comprised one phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminolipids and three unidentified lipids. Based on the results of 16S rRNA gene sequence analysis, strain SCR12T was found to be most closely related to
Muricauda olearia
CL-SS4T (98.09 %), followed by
Muricauda beolgyonensis
BB-My12T (97.65 %),
Muricauda aquimarina
SW-63T (97.58 %) and
Muricauda ruestringensis
DSM 13258T (97.31 %) and with lower sequence similarities (95.74–97.10 %) to other species of the genus
Muricauda
. Genome relatedness between strain SCR12T and
M. olearia
CL-SS4T was computed using both average nucleotide identity (ANI) and DNA–DNA hybridization (DDH) and resulted in values of 85.6 % and 29.3±2.3 %, respectively. The genomic DNA G+C content of strain SCR12T was 42.3 mol%. On the basis of polyphasic analysis, the strain SCR12T was considered to represent a novel species of the genus Muricauda, for which the name Muricauda alvinocaridis sp. nov. is proposed. The type strain is SCR12T (=MCCC 1K03731T=JCM 33425T).
Collapse
|
15
|
Park JS. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium. Int J Syst Evol Microbiol 2019; 69:3800-3805. [DOI: 10.1099/ijsem.0.003683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jin-Sook Park
- Department of Biological Sciences and Biotechnology, Hannam University Jeonmin-dong, Yuseong-gu, Daejeon 34430, Republic of Korea
| |
Collapse
|
16
|
Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. Int J Syst Evol Microbiol 2019; 69:3100-3108. [DOI: 10.1099/ijsem.0.003595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Muricauda nanhaiensis sp. nov., isolated from seawater of the South China Sea. Int J Syst Evol Microbiol 2019; 69:2089-2094. [DOI: 10.1099/ijsem.0.003437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Liu SQ, Sun QL, Sun YY, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538-2544. [DOI: 10.1099/ijsem.0.002870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shi-qi Liu
- 1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
- 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
- 3University of Chinese Academy of Sciences, Beijing, PR China
| | - Qing-lei Sun
- 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
- 1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Yuan-yuan Sun
- 1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
- 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Chao Yu
- 1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
- 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
- 3University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Sun
- 1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
- 2Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
19
|
Zhang X, Liu X, Lai Q, Du Y, Sun F, Shao Z. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881-885. [DOI: 10.1099/ijsem.0.002602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiaorong Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Xiupian Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Yaping Du
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Fengqin Sun
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
20
|
Yoon J, Yasumoto-Hirose M, Kasai H. Coraliitalea coralii gen. nov., sp. nov., a Marine Bacterium of the Family Flavobacteriaceae Isolated from the Hard Coral Galaxea fascicularis. Curr Microbiol 2017; 75:464-470. [PMID: 29152676 DOI: 10.1007/s00284-017-1403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022]
Abstract
A polyphasic taxonomic study was performed on a novel strain designated as 04OKA-3-121T, which was isolated from the hard coral Galaxea fascicularis L. collected at Akajima, Okinawa, Japan. These bacterial cells were observed to be pale-yellow, Gram-stain-negative, strictly aerobic, chemoheterotrophic, non-spore forming, non-motile, and rod-shaped. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel marine isolate is affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (93.6%) sequence similarity with Pseudozobellia thermophila KMM 3531T. The strain could be phenotypically differentiated from related members of the family Flavobacteriaceae. Major fatty acids of strain 04OKA-3-121T were iso-C15:0, iso-C15:1 G, and C16:1 ω7c and/or C16:1 ω6c. The DNA G + C content of the strain was determined to be 38.8 mol% and the major respiratory quinone was identified as menaquinone 6 (MK-6). Strain 04OKA-3-121T had phosphatidylethanolamine, two unidentified aminolipids, and eight unidentified lipids as polar lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus in the family Flavobacteriaceae, for which the name Coraliitalea coralii gen. nov., sp. nov. is proposed. The type strain of C. coralii gen. nov., sp. nov. is 04OKA-3-121T (= KCTC 52378T = NBRC 112329T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| | - Mina Yasumoto-Hirose
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate, 026-0001, Japan
- Tropical Technology Plus, 12-75 Suzaki, Uruma, Okinawa, 904-2234, Japan
| | - Hiroaki Kasai
- Marine Biosciences Kamaishi Research Laboratory, Kitasato University, 160-4 Utou, Okirai, Sanriku-cho, Ofunato, Iwate, 022-0101, Japan
| |
Collapse
|
21
|
Hyeon JW, Kim KH, Chun BH, Jeon CO. Pontibacterium granulatum gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:3784-3790. [DOI: 10.1099/ijsem.0.002190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jong Woo Hyeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
22
|
Hyeon JW, Kim KH, Jeong SE, Jeon CO. Pacificibacter aestuarii sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:3627-3632. [PMID: 28875903 DOI: 10.1099/ijsem.0.002181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic bacterium, designated KJ21T, was isolated from a tidal flat in South Korea. Cells were non-motile rods showing oxidase- and catalase-positive activities. Growth of strain KJ21T was observed at 10-35 °C (optimum, 30 °C), at pH 6.0-8.5 (optimum, pH 7.0) and in the presence of 1-5 % (w/v) NaCl (optimum, 2 %). Strain KJ21T contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), C16 : 0, 10-methyl C19 : 0 and C10 : 0 3-OH as the major fatty acids and ubiquinone-10 as the major isoprenoid quinone. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unknown aminolipid and an unknown lipid were detected as the major polar lipids. The G+C content of the genomic DNA was 53.9 mol%. Phylogenic analysis based on 16S rRNA gene sequences showed that strain KJ21T formed a tight phylogenetic lineage with the members of the genus Pacificibacter with a 100 % bootstrap value. Strain KJ21T was most closely related to Pacificibacter maritimus KMM 9031T (98.7 %) and Pacificibacter marinus HDW-9T (98.4 %), and the DNA-DNA relatedness values between strain KJ21T and the type strains of P. maritimus and P. marinus were 46.9±4.2 % and 39.8±5.7, respectively. On the basis of phenotypic, chemotaxonomic and molecular properties, it is clear that strain KJ21T represents a novel species of the genus Pacificibacter, for which the name Pacificibacter aestuarii sp. nov. is proposed. The type strain is KJ21T (=KACC 19098T=JCM 31805T).
Collapse
Affiliation(s)
- Jong Woo Hyeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
Su Y, Yang X, Wang Y, Liu Y, Ren Q, Zhang XH. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446-2451. [DOI: 10.1099/ijsem.0.001992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ying Su
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xiaoting Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Yuyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Qiaomeng Ren
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xiao-Hua Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| |
Collapse
|
24
|
Wang Y, Yang X, Liu J, Wu Y, Zhang XH. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1064-1069. [DOI: 10.1099/ijsem.0.001792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoting Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ji Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
25
|
Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281-96. [PMID: 27287844 DOI: 10.1016/j.syapm.2016.04.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Members of the phylum Bacteroidetes, which was originally defined as a monophyletic branch encompassing the genera Cytophaga, Flavobacterium and Bacteroides (CFB), are widely studied due to their importance in environmental and gut microbiology. As a consequence, the number of species names with standing in nomenclature has doubled in the past five years. In this study, a revision of an earlier phylogeny of Bacteroidetes has been performed using the 16S rRNA gene as a backbone in combination with the 23S rRNA gene, as well as multilocus sequence analysis (MLSA) of 29 orthologous protein sequences, and indels in the sequences of the beta subunit of the F-type ATPase and the alanyl-tRNA synthetase. In addition, taxonomic data for Bacteroidetes has been updated by considering the orphan species list, signature nucleotides in the 16S rRNA sequence, the list of outlier species, and discrepancies with the current taxonomy at the genus rank level. As a result, seven new taxa are proposed within Bacteroidetes (Chitinophagia classis nov., Chitinophagales ord. nov., Crocinitomicaceae fam. nov., Odoribacteraceae fam. nov., Hymenobacteraceae fam. nov., Thermonemataceae fam. nov. and Persicobacteraceae fam. nov.), as well as one new phylum Rhodothermaeota phyl. nov. that contains two classes, two orders, four families and a new genus with two new combinations.
Collapse
|
26
|
Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:4087-4092. [DOI: 10.1099/ijsem.0.000542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-flagellated, non-gliding, oxidase- and catalase-positive, rod-shaped and orange-pigmented bacterium with appendages, designated strain SW027T, was isolated from a surface seawater sample collected from the South Pacific Gyre (26° 29′ S 137° 56′ W) during the Integrated Ocean Drilling Program (IODP) Expedition 329. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SW027T shared the highest sequence similarity with members of the genus Muricauda (94.3–92.7 %), exhibiting 94.3 % sequence similarity to Muricauda flavescens SW-62T. Optimal growth occurred in the presence of 3 % (w/v) NaCl, at pH 7.0 and at 37 °C. The DNA G+C content of strain SW027T was 42.7 mol%. The major fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The major respiratory quinone was menaquinone-6. The major polar lipids were phosphatidylethanolamine and two unidentified lipids. Enzymic activity profiles, cell morphology and DNA G+C content differentiated the novel bacterium from the most closely related members of the genus Muricauda. On the basis of the polyphasic analyses, strain SW027T is considered to represent a novel species of the genus Muricauda, for which the name Muricauda pacifica sp. nov. is proposed. The type strain is SW027T ( = JCM 17861T = LMG 26637T).
Collapse
|
27
|
Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339T. Mar Genomics 2015; 23:51-3. [DOI: 10.1016/j.margen.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022]
|
28
|
Sangnoi Y, Plubrukarn A, Arunpairojana V, Kanjana-Opas A. A new antibacterial amino phenyl pyrrolidone derivative from a novel marine gliding bacterium Rapidithrix thailandica. World J Microbiol Biotechnol 2013; 30:1135-9. [PMID: 24162950 DOI: 10.1007/s11274-013-1531-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/16/2013] [Indexed: 11/25/2022]
Abstract
A recently described marine gliding bacterium Rapidithrix thailandica strain TISTR 1741 was isolated from biofilm specimen collected from the Andaman Sea in Thailand. Four liters fermentation broth of R. thailandica TISTR 1741 cultivated in VY/2 medium were extracted with methanol to yield a novel amino phenyl pyrrolidone derivative compound (1) with antibacterial activities. The chemical structure and physico-chemical properties of 1 were investigated by spectrometry techniques. Compound 1 exhibited selective inhibition against vancomycin-resistant Enterococcus faecalis (VRE) with the MIC of 5.97 mM.
Collapse
Affiliation(s)
- Yutthapong Sangnoi
- Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand,
| | | | | | | |
Collapse
|