1
|
Klijn A, Baylis C, Xiao Y, Li H, Cabon A, Antonie-Zijlstra S, De Benito A, Ellingsen AB, Wells-Bennik MHJ. Overview of endospore-forming bacteria in food: The road towards a harmonised method for the enumeration of their spores. Int J Food Microbiol 2025; 432:111046. [PMID: 39922036 DOI: 10.1016/j.ijfoodmicro.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Endospore-forming bacteria are an important challenge for the food industry due to their ubiquitous nature, widespread presence in the food chain and sophisticated survival mechanisms. An accurate method is needed that can provide insight into the quality of raw materials, predict spoilage potential and ensure food safety. A plethora of methods exist for the enumeration of spore-forming bacteria which vary among countries, industries and food producers. These methods describe a wide range of values in the key method parameters, such as heat treatment, growth medium, incubation time, and temperature. Consequently the results obtained can vary leading to misalignment and confusion. In addition, many of these methods are empirical and have not been validated. A harmonised international approach for the enumeration of spores is needed to provide consistent and reliable results on which to base food safety and quality decisions. A group of experts associated with the Internal Standardisation Organisation working group undertaking this task has identified the main endospore-forming bacterial species occurring in foods based on a wide selection of publications. Endospores are typically formed by bacteria belonging to twelve families originating from the Negativicutes, Bacilli and Clostridia classes, with the latter two being the most important for the food industry. This review will be used as a first step in method standardisation.
Collapse
Affiliation(s)
- Adrianne Klijn
- Nestlé Research, Route du Jorat 57, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Chris Baylis
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom.
| | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Agro Food Park 19, 8200 Aarhus N, Denmark.
| | - Haiping Li
- USDA Agriculture Marketing Service Dairy Program, 1400 Independence Av, SW, Washington, DC, 25250, United States.
| | - Antoine Cabon
- Danone Analytical Excellence, 800 Rue des Vignes Rouges, 74500 Publier, France.
| | | | - Amparo De Benito
- AINIA, Parque Tecnológico de Valencia, Av. Benjamín Franklin, 5-11, 46980 Paterna, Valencia, Spain.
| | | | | |
Collapse
|
2
|
Hurtado-Bautista E, Islas-Robles A, Moreno-Hagelsieb G, Olmedo-Alvarez G. Thermal Plasticity and Evolutionary Constraints in Bacillus: Implications for Climate Change Adaptation. BIOLOGY 2024; 13:1088. [PMID: 39765755 PMCID: PMC11673879 DOI: 10.3390/biology13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild Bacillus strains from two lineages (Bacillus cereus and Bacillus subtilis) to examine their thermal adaptation strategies. We exposed the bacteria to gradually increasing temperatures to assess their thermal plasticity, focusing on the genetic mechanisms underlying adaptation. While B. subtilis lineages improved growth at highly critical temperatures, only one increased its thermal niche to 4 °C above their natural range. This finding is concerning given climate change projections. B. cereus strains exhibited higher mutation rates but were not able to grow at increasing temperatures, while B. subtilis required fewer genetic changes to increase heat tolerance, indicating distinct adaptive strategies. We observed convergent evolution in five evolved lines, with mutations in genes involved in c-di-AMP synthesis, which is crucial for potassium transport, implicating this chemical messenger for the first time in heat tolerance. These insights highlight the vulnerability of bacteria to climate change and underscore the importance of genetic background in shaping thermal adaptation.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | | | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| |
Collapse
|
3
|
Moreno-Valencia FD, Plascencia-Espinosa MÁ, Morales-García YE, Muñoz-Rojas J. Selection and Effect of Plant Growth-Promoting Bacteria on Pine Seedlings ( Pinus montezumae and Pinus patula). Life (Basel) 2024; 14:1320. [PMID: 39459620 PMCID: PMC11509945 DOI: 10.3390/life14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Forest cover is deteriorating rapidly due to anthropogenic causes, making its restoration urgent. Plant growth-promoting bacteria (PGPB) could offer a viable solution to ensure successful reforestation efforts. This study aimed to select bacterial strains with mechanisms that promote plant growth and enhance seedling development. The bacterial strains used in this study were isolated from the rhizosphere and endophyte regions of Pinus montezumae Lamb. and Pinus patula Schl. et Cham., two Mexican conifer species commonly used for reforestation purposes. Sixteen bacterial strains were selected for their ability to produce auxins, chitinase, and siderophores, perform nitrogen fixation, and solubilize inorganic phosphates; they also harbored genes encoding antimicrobial production and ACC deaminase. The adhesion to seeds, germination rate, and seedling response of P. montezumae and P. patula were performed following inoculation with 10 bacterial strains exhibiting high plant growth-promoting potential. Some strains demonstrated the capacity to enhance seedling growth. The selected strains were taxonomically characterized and belonged to the genus Serratia, Buttiauxella, and Bacillus. These strains exhibited at least two mechanisms of action, including the production of indole-3-acetic acid, biological nitrogen fixation, and phosphate solubilization, and could serve as potential alternatives for the reforestation of affected areas.
Collapse
Affiliation(s)
- Francisco David Moreno-Valencia
- Consejo Nacional de Ciencias, Humanidades y Tecnología (CONAHCYT)—Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
| | - Miguel Ángel Plascencia-Espinosa
- Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico
| | - Yolanda Elizabeth Morales-García
- Grupo Inoculantes Microbianos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Jesús Muñoz-Rojas
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| |
Collapse
|
4
|
Patel I, Bello S, Gupta RS. Phylogenomic and molecular marker based studies to clarify the evolutionary relationships amongst Anoxybacillus species and demarcation of the family Anoxybacillaceae and some of its constituent genera. Int J Syst Evol Microbiol 2024; 74:006528. [PMID: 39287972 PMCID: PMC11407518 DOI: 10.1099/ijsem.0.006528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The family Anoxybacillaceae was recently proposed encompassing the genera Anoxybacillus, Geobacillus, Parageobacillus, Saccharococcus and Thermolongibacillus. Of these genera, Anoxybacillus contains >50% of the Anoxybacillaceae species. However, Anoxybacillus species form multiple unrelated clades in phylogenetic trees and their evolutionary relationships are unclear. To clarify the evolutionary relationships of Anoxybacillus and other Anoxybacillaceae species, detailed phylogenomic and comparative analyses were conducted on 38 Anoxybacillaceae species with available genomes. In a phylogenomic tree based on 1148 core proteins, all Anoxybacillus, Geobacillus, Parageobacillus, Saccharococcus and Thermolongibacillus species, excepting Anoxybacillus sediminis, formed a strongly supported clade representing the family Anoxybacillaceae. Five conserved signature indels (CSIs) reported here are also uniquely found in these species, providing robust means for the demarcation of family Anoxybacillaceae in molecular terms. In our phylogenomic tree and in the Genomic Taxonomy Database, Anoxybacillus species formed four distinct clades designated as Anoxybacillus sensu stricto (containing the type species A. pushchinoensis), Anoxybacillus_A, Anoxybacillus_B and Anoxybacillus_C. Our analyses have identified 17 novel CSIs which offer means to reliably distinguish species from these clades based upon multiple uniquely shared molecular characteristics. Additionally, we have identified three and seven CSIs specific for the genera Geobacillus and Brevibacillus, respectively. All seven Brevibacillus-specific CSIs are also shared by Anoxybacillus sediminis, which branches reliably with this genus. Based on the strong phylogenetic and molecular evidence presented here, we are proposing that the genus Anoxybacillus should be restricted to only the species from Anoxybacillus sensu stricto clade, whereas the species from Anoxybacillus_A, Anoxybacillus_B, and Anoxybacillus_C clades should be transferred into three novel genera Anoxybacteroides gen. nov., Paranoxybacillus gen. nov. and Thermaerobacillus gen. nov., respectively. Additionally, we are also proposing the transfer of Anoxybacillus sediminis to the genus Brevibacillus. The proposed changes, which reliably depict the evolutionary relationships among Anoxybacillaceae species, should be helpful in the studies of these organisms.
Collapse
Affiliation(s)
- Isha Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - Sarah Bello
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
5
|
Dobrange E, Porras-Domínguez JR, Van den Ende W. The Complex GH32 Enzyme Orchestra from Priestia megaterium Holds the Key to Better Discriminate Sucrose-6-phosphate Hydrolases from Other β-Fructofuranosidases in Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1302-1320. [PMID: 38175162 DOI: 10.1021/acs.jafc.3c06874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Inulin is widely used as a prebiotic and emerging as a priming compound to counteract plant diseases. We isolated inulin-degrading strains from the lettuce phyllosphere, identified as Bacillus subtilis and Priestia megaterium, species hosting well-known biocontrol organisms. To better understand their varying inulin degradation strategies, three intracellular β-fructofuranosidases from P. megaterium NBRC15308 were characterized after expression in Escherichia coli: a predicted sucrose-6-phosphate (Suc6P) hydrolase (SacAP1, supported by molecular docking), an exofructanase (SacAP2), and an invertase (SacAP3). Based on protein multiple sequence and structure alignments of bacterial glycoside hydrolase family 32 enzymes, we identified conserved residues predicted to be involved in binding phosphorylated (Suc6P hydrolases) or nonphosphorylated substrates (invertases and fructanases). Suc6P hydrolases feature positively charged residues near the structural catalytic pocket (histidine, arginine, or lysine), whereas other β-fructofuranosidases contain tryptophans. This correlates with our phylogenetic tree, grouping all predicted Suc6P hydrolases in a clan associated with genomic regions coding for transporters involved in substrate phosphorylation. These results will help to discriminate between Suc6P hydrolases and other β-fructofuranosidases in future studies and to better understand the interaction of B. subtilis and P. megaterium endophytes with sucrose and/or fructans, sugars naturally present in plants or exogenously applied in the context of defense priming.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| |
Collapse
|
6
|
Rudra B, Gupta RS. Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera. Front Microbiol 2024; 14:1273665. [PMID: 38249459 PMCID: PMC10797017 DOI: 10.3389/fmicb.2023.1273665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the "Aeruginosa clade" containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae genomes have identified 98 novel conserved signature indels (CSIs), which are uniquely shared by the species from different observed clades/groups. Six CSIs, which are exclusively shared by species from the "Aeruginosa clade," provide reliable demarcation of this clade corresponding to the genus Pseudomonas sensu stricto in molecular terms. The remaining 92 identified CSIs are specific for nine other Pseudomonas species clades and the genera Azomonas and Azotobacter which branch in between them. The identified CSIs provide strong independent evidence of the genetic cohesiveness of these species clades and offer reliable means for their demarcation/circumscription. Based on the robust phylogenetic and molecular evidence presented here supporting the distinctness of the observed Pseudomonas species clades, we are proposing the transfer of species from the following clades into the indicated novel genera: Alcaligenes clade - Aquipseudomonas gen. nov.; Fluvialis clade - Caenipseudomonas gen. nov.; Linyingensis clade - Geopseudomonas gen. nov.; Oleovorans clade - Ectopseudomonas gen. nov.; Resinovorans clade - Metapseudomonas gen. nov.; Straminea clade - Phytopseudomonas gen. nov.; and Thermotolerans clade - Zestomonas gen. nov. In addition, descriptions of the genera Azomonas, Azotobacter, Chryseomonas, Serpens, and Stutzerimonas are emended to include information for the CSIs specific for them. The results presented here should aid in the development of a more reliable classification scheme for Pseudomonas species.
Collapse
Affiliation(s)
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Xu X, Nielsen LJD, Song L, Maróti G, Strube ML, Kovács ÁT. Enhanced specificity of Bacillus metataxonomics using a tuf-targeted amplicon sequencing approach. ISME COMMUNICATIONS 2023; 3:126. [PMID: 38012258 PMCID: PMC10682494 DOI: 10.1038/s43705-023-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Bacillus species are ubiquitous in nature and have tremendous application potential in agriculture, medicine, and industry. However, the individual species of this genus vary widely in both ecological niches and functional phenotypes, which, hence, requires accurate classification of these bacteria when selecting them for specific purposes. Although analysis of the 16S rRNA gene has been widely used to disseminate the taxonomy of most bacterial species, this gene fails proper classification of Bacillus species. To circumvent this restriction, we designed novel primers and optimized them to allow exact species resolution of Bacillus species in both synthetic and natural communities using high-throughput amplicon sequencing. The primers designed for the tuf gene were not only specific for the Bacillus genus but also sufficiently discriminated species both in silico and in vitro in a mixture of 11 distinct Bacillus species. Investigating the primers using a natural soil sample, 13 dominant species were detected including Bacillus badius, Bacillus velezensis, and Bacillus mycoides as primary members, neither of which could be distinguished with 16S rRNA sequencing. In conclusion, a set of high-throughput primers were developed which allows unprecedented species-level identification of Bacillus species and aids the description of the ecological distribution of Bacilli in various natural environment.
Collapse
Affiliation(s)
- Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Lasse Johan Dyrbye Nielsen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Lijie Song
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
- BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
8
|
Gupta RS. Update on the genus Robertmurraya: a bacterial genus honoring Dr. Robert G.E. Murray (with some personal reminiscences). Can J Microbiol 2023; 69:387-392. [PMID: 37555510 DOI: 10.1139/cjm-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The genus Robertmurraya was created by my group in 2020 to recognize the contributions of Dr. Robert G.E. Murray to the field of prokaryotic taxonomy. This manuscript updates the information regarding this genus. In addition to the seven Robertmurraya species with validly published names, the work presented here shows that two species with effectively published names, "Bacillus yapensis" and "Bacillus dakarensis", and an uncharacterized Bacillus sp. Y1 are also affiliated with this genus. Based on these results, reclassification of "Bacillus yapensis" as a novel species Robertmurraya yapensis sp. nov. is proposed. It is also suggested that "Bacillus dakarensis", for which strains are not available from culture collections, should also be recognized as "Robertmurraya dakarensis". This article also reflects on the serendipitous way I came to know Dr. Murray and his extensive interactions with me and strong support for our work for more than 10 years. Dr. Murray also introduced me and our work to his friend and contemporary Dr. Peter Sneath, who like him also contributed extensively to the field of prokaryotic taxonomy. This introduction led to a fruitful collaboration with Dr. Sneath leading to a joint publication describing the use of the Character Compatibility approach to molecular sequence data.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
| |
Collapse
|
9
|
Bello S, Mudassir SH, Rudra B, Gupta RS. Phylogenomic and molecular markers based studies on Staphylococcaceae and Gemella species. Proposals for an emended family Staphylococcaceae and three new families (Abyssicoccaceae fam. nov., Salinicoccaceae fam. nov. and Gemellaceae fam. nov.) harboring four new genera, Lacicoccus gen. nov., Macrococcoides gen. nov., Gemelliphila gen. nov., and Phocicoccus gen. nov. Antonie Van Leeuwenhoek 2023; 116:937-973. [PMID: 37523090 DOI: 10.1007/s10482-023-01857-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The family Staphylococcacae and genus Gemella contain several organisms of clinical or biotechnological importance. We report here comprehensive phylogenomic and comparative analyses on 112 available genomes from species in these taxa to clarify their evolutionary relationships and classification. In a phylogenomic tree based on 678 core proteins, Gemella species were separated from Staphylococcacae by a long branch indicating that they constitute a distinct family (Gemellaceae fam. nov.). In this tree, Staphylococcacae species formed two main clades, one encompassing the genera Aliicoccus, Jeotgalicoccus, Nosocomiicoccus and Salinicoccus (Family "Salinicoccaceae"), while the other clade consisted of the genera Macrococcus, Mammaliicoccus and Staphylococcus (Family Staphylococcaceae emend.). In this tree, species from the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus each formed two distinct clades. Two species clades for these genera are also observed in 16S rRNA gene trees and supported by average amino acid identity analysis. We also report here detailed analyses on protein sequences from Staphylococcaceae and Gemella genomes to identify conserved signature indels (CSIs) which are specific for different genus and family-level clades. These analyses have identified 120 novel CSIs robustly demarcating different proposed families and genera. The identified CSIs provide independent evidence that the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus consist of two distinct clades, which can be reliably distinguished based on multiple exclusively shared CSIs. We are proposing transfers of the species from the novel clades of the above four genera into the genera Gemelliphila gen. nov., Phocicoccus gen. nov., Macrococcoides gen. nov. and Lacicoccus gen. nov., respectively. The identified CSIs also provide strong evidence for division of Staphylococcaceae into an emended family Staphylococcaceae and two new families, Abyssicoccaceae fam. nov. and Salinicoccaceae fam. nov. All of these families can be reliably demarcated based on several exclusively shared CSIs.
Collapse
Affiliation(s)
- Sarah Bello
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Syed Huzaifa Mudassir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
10
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
11
|
Rocha GT, Queiroz PRM, Grynberg P, Togawa RC, de Lima Ferreira ADC, do Nascimento IN, Gomes ACMM, Monnerat R. Biocontrol potential of bacteria belonging to the Bacillus subtilis group against pests and diseases of agricultural interest through genome exploration. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01822-3. [PMID: 37178245 DOI: 10.1007/s10482-023-01822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The usage of microorganisms as biocontrol agents and biofertilizers has been recommended and recognized as an ecologically correct alternative to maintaining the productivity and safety of crops. Thus, the objectives of this work were to characterize twelve strains belonging to Invertebrate Bacteria Collection of Embrapa Genetic Resources and Biotechnology by molecular, morphological, and biochemical methods and to evaluate the pathogenicity of these strains against pests and diseases of agricultural interest. The morphological characteristic of the strains was performed according to the principles of Bergy's Manual of Systematic Bacteriology. The genomes of the 12 strains were sequenced in Macrogen, Inc. (Seoul, Korea) using the HiSeq2000 and GS-FLX Plus high-performance platforms. In the determination of antibiotic sensibility profiles, disc-diffusion methods (Cefar Diagnótica Ltda) were adopted©. Selective bioassays were carried out with insects of the Lepidoptera (Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens), Coleoptera (Anthonomus grandis), Diptera (Aedes aegypti) and Hemiptera (Euschistus heros) orders, and with the nematode Caenorhabditis elegans. In addition, the antagonistic action of the phytopathogens Fusarium oxysporum f. sp. vasinfectum and Sclerotinia sclerotiorum against the strains under study, and in vitro assays of phosphate solubilization were also performed. Sequencing of the complete genome of the 12 strains determined that all of them belonged to the Bacillus subtilis sensu lato group. In the strains genome were detected genic clusters responsible for encoding secondary metabolites such as surfactin, iturin, fengycins/plipastatin, bacillomycin, bacillisin, and siderophores. Due to the production of these compounds, there was a survival reduction of the Lepidoptera order insects and a reduction in the phytopathogens mycelial growth. These results show that the species of group B. subtilis s.l. can become promising microbiological alternatives to pest and disease control.
Collapse
Affiliation(s)
- Gabriela Teodoro Rocha
- Faculdade de Agronomia e Medicina Veterinária., Universidade de Brasília - Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| | - Paulo Roberto Martins Queiroz
- Centro Universitário de Brasília - CEUB 707/907 - Campus Universitário, SEPN - Asa Norte, Brasília, DF, 70790-075, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Izabela Nunes do Nascimento
- Universidade Federal da Paraíba - Centro de Ciências Agrárias, Campus II, Rodovia PB 079 - Km 12, Areia, PB, 58397-000, Brazil
| | - Ana Cristina Meneses Mendes Gomes
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Rose Monnerat
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
12
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
13
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
14
|
Muigg V, Cuénod A, Purushothaman S, Siegemund M, Wittwer M, Pflüger V, Schmidt KM, Weisser M, Ritz N, Widmer A, Goldenberger D, Hinic V, Roloff T, Søgaard KK, Egli A, Seth-Smith HM. Diagnostic challenges within the Bacillus cereus-group: finding the beast without teeth. New Microbes New Infect 2022; 49-50:101040. [DOI: 10.1016/j.nmni.2022.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
15
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
16
|
Taïbi N, Ameraoui R, Kaced A, Abou-Mustapha M, Bouchama A, Djafri A, Taïbi A, Mellahi K, Hadjadj M, Touati S, Badri FZ, Djema S, Masmoudi Y, Belmiri S, Khammar F. Multifloral white honey outclasses manuka honey in methylglyoxal content: assessment of free and encapsulated methylglyoxal and anti-microbial peptides in liposomal formulation against toxigenic potential of Bacillus subtilis Subsp spizizenii strain. Food Funct 2022; 13:7591-7613. [PMID: 35731546 DOI: 10.1039/d2fo00566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The therapeutic virtues of honey no longer need to be proven. Honey, which is rich in nutrients, is an excellent nutritional food because of its many properties; however, honey has been diverted from this primary function and used in clinical research. Evidence has shown that honey still possesses unknown properties and some of these aspects have never been addressed. In this work, two bioactive compounds found in honey (methylglyoxal and antimicrobial peptides) were evaluated for their anti-Bacillus subtilis activity with particular attention to their dilution factor. Although this bacterial strain does not possess an indigenous virulence factor gene, it becomes virulent by transferring plasmids with B. thuringiensis or expression of toxins from Bordetella pertussis. As is known, methylglyoxal is a toxic electrophile present in many eukaryotic and prokaryotic cells, which is generated by enzymatic and non-enzymatic reactions. Its overexpression successfully kills bacteria by inducing membrane disruption. Also, AMPs show potent inhibitory action against Gram-positive bacteria. Because of the lack of information concerning the main ingredients of honey, the microencapsulation process was used. Both methylglyoxal (MGO) and peptide-loaded liposomes were synthesized, characterized and compared to their free forms. The liposomal formulations contained a mixture of eggPC, cholesterol, and octadecylamine and their particle sizes were measured and their encapsulation efficacy calculated. The results revealed that Algerian multifloral white honey contained higher levels of MGO compared to manuka honey, which prevented bacterial growth and free MGO was relatively less effective. In fact, MGO killed BS in the loaded form with the same bacteriostatic and bactericidal index. However, the action of AMPs was different. Indeed, the investigation into the reactivity of MGO in the solvent indicated that regardless of the level of water added, honey is active at a fixed dilution. This data introduces the notion of dilution and abolishes the concept of concentration. Moreover, the synergistic antibacterial effect of the compounds in honey was diminished by the matrix effect. The degree of liposome-bacteria-fusion and the delay effect observed could be explain by both the composition and nature of the lipids used. Finally, this study reinforces the idea that under certain conditions, the metalloproteinases in honey produce AMPs.
Collapse
Affiliation(s)
- Nadia Taïbi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria. .,Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria
| | - Rachid Ameraoui
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Mohamed Abou-Mustapha
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Abdelghani Bouchama
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Ahmed Djafri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Amina Taïbi
- Laboratoire de Parasitologie et Mycologie, Laboratoire de Recherche Santé et production Animale, École Nationale Supérieure Vétérinaire, B.P. 228, Oued Smar, Alger, Algeria
| | - Kahina Mellahi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Mohamed Hadjadj
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Souad Touati
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Fatima-Zohra Badri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Souhila Djema
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Yasmina Masmoudi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Sarah Belmiri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Farida Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria
| |
Collapse
|
17
|
Rahman MM, Lim SJ, Park YC. Molecular Identification of Bacillus Isolated from Korean Water Deer (Hydropotes inermis argyropus) and Striped Field Mouse (Apodemus agrarius) Feces by Using an SNP-Based 16S Ribosomal Marker. Animals (Basel) 2022; 12:ani12080979. [PMID: 35454225 PMCID: PMC9031142 DOI: 10.3390/ani12080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wildlife is a great concern because of its free-ranging movements. They carry bacterial zoonoses in their feces, such as Bacillus species. In this study, we developed a 16S Bacillus species-specific 16S ribosomal RNA (rRNA) molecular marker for species identification. For discrimination of genetically similar members of Bacillus cereus group, including Bacillus cereus, B. anthrax, and B. thuringiensis, a single nucleotide polymorphism (SNP)-based marker was developed. We altered an artificial base at the 3′-end of SNP sites in each SNP-based 16S rRNA primer sequence to improve the ability of SNP-based primers to bind the PCR template sequence, thereby improving the allele-specific detection of target B. cereus strains. SNP analysis in high-quality DNA sequences could facilitate identification and discrimination of closely related bacterial species. Abstract Ambiguous, heterogeneous, endospore-forming Bacillus species, notably Bacillus cereus, often produce fatal toxins that threaten human health. We identified Bacillus from wild animal fecal samples (n = 80), including the Korean water deer (n = 25) and striped field mouse (n = 55). Using traditional culture-based methods, 25 animal fecal samples (31.25%; 25/80) were found to be positive for Bacillus species, whereas using molecular techniques, 19 samples (23.75%; 19/80) were found to be positive for the same. In addition, we designed a Bacillus species-specific 16S ribosomal RNA (rRNA) gene marker and utilized it to identify 19 samples by means of PCR amplification and sequencing, using at least one colony from the 19 Bacillus positive samples. The recovered sequences were matched to sequences of three Bacillus species (B. cereus, B. amyloliquefaciens, and B. megaterium) from the GenBank database. Moreover, the phylogenetic tree generated in this study established specific clades for the Bacillus group. In addition, to differentiate between B. cereus, B. anthracis, and B. thuringiensis, we designed a single nucleotide polymorphism (SNP)-based primer by identifying SNPs in the alignment of 16S rRNA gene sequences of B. cereus group strains. The SNPs were used to design primer sets for discrimination between highly similar species from the B. cereus group. The study could be used in surveillance of agricultural fresh-produce-associated Bacillus outbreaks, for accurate identification of each Bacillus species, and in the development of control measures.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Sang-Jin Lim
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.L.); (Y.-C.P.)
| | - Yung-Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (S.-J.L.); (Y.-C.P.)
| |
Collapse
|
18
|
Dabiré Y, Somda NS, Somda MK, Mogmenga I, Traoré AK, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH. Molecular identification and safety assessment of Bacillus strains isolated from Burkinabe traditional condiment “soumbala”. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01664-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Alkaline-fermented foods (AFFs) play an essential role in the diet of millions of Africans particularly in the fight against hidden hunger. Among AFFs, soumbala is a very popular condiment in Burkina Faso, available and affordable, rich in macronutrients (proteins, lipids, carbohydrates, essential amino acids, and fatty acids), micronutriments (minerals, B group vitamins), and fibers. Bacillus spp. are known to be the predominant microbial species in AFFs and thus have elicited enhanced interest as starter cultures or probiotics. However, few data exist on identification and safety attributes of relevant Bacillus species from African AFFs, particularly from Burkinabe soumbala.
Methods
This study aimed to genotypically characterize 20 Bacillus strains previously isolated from soumbala, using PCR and sequencing of the 16S rRNA genes, and to evaluate their safety attributes.
Results
Phylogenetic analysis revealed that the strains were most closely related by decreasing numbers to B. cereus, B. subtilis, Bacillus sp., B. tropicus, B. toyonensis, B. nealsonii, B. amyloliquefaciens, Brevibacillus parabrevis, and B. altitudinis. Among the isolates, 10 were β-hemolytic and 6 were γ-hemolytic while 4 were of indeterminate hemolysis. The 6 γ-hemolytic (presumptively non-pathogenic) strains were susceptible to all tested antibiotics except bacitracin. Strains F20, and F21 were the most sensitive to imipenem (38.04 ± 1.73 mm and 38.80 ± 1.57 mm, respectively) while strain B54 showed the weakest sensitivity to bacitracin (11.00 ± 0.63 mm) with high significant differences (p < 0.0001).
Conclusion
The findings highlight identification and safety quality of Bacillus strains which could be further characterized as probiotic-starter cultures for high-quality soumbala production.
Collapse
|
19
|
Madriz-Ordeñana K, Pazarlar S, Jørgensen HJL, Nielsen TK, Zhang Y, Nielsen KL, Hansen LH, Thordal-Christensen H. The Bacillus cereus Strain EC9 Primes the Plant Immune System for Superior Biocontrol of Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050687. [PMID: 35270157 PMCID: PMC8912794 DOI: 10.3390/plants11050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/08/2023]
Abstract
Antibiosis is a key feature widely exploited to develop biofungicides based on the ability of biological control agents (BCAs) to produce fungitoxic compounds. A less recognised attribute of plant-associated beneficial microorganisms is their ability to stimulate the plant immune system, which may provide long-term, systemic self-protection against different types of pathogens. By using conventional antifungal in vitro screening coupled with in planta assays, we found antifungal and non-antifungal Bacillus strains that protected the ornamental plant Kalanchoe against the soil-borne pathogen Fusarium oxysporum in experimental and commercial production settings. Further examination of one antifungal and one non-antifungal strain indicated that high protection efficacy in planta did not correlate with antifungal activity in vitro. Whole-genome sequencing showed that the non-antifungal strain EC9 lacked the biosynthetic gene clusters associated with typical antimicrobial compounds. Instead, this bacterium triggers the expression of marker genes for the jasmonic and salicylic acid defence pathways, but only after pathogen challenge, indicating that this strain may protect Kalanchoe plants by priming immunity. We suggest that the stimulation of the plant immune system is a promising mode of action of BCAs for the development of novel biological crop protection products.
Collapse
Affiliation(s)
- Kenneth Madriz-Ordeñana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
- Correspondence:
| | - Sercan Pazarlar
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Microbial Ecology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark; (T.K.N.); (L.H.H.)
| | - Yingqi Zhang
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | | | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Microbial Ecology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark; (T.K.N.); (L.H.H.)
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| |
Collapse
|
20
|
Cavalini L, Jankoski P, Correa APF, Brandelli A, Motta ASDA. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. AN ACAD BRAS CIENC 2021; 93:e20201820. [PMID: 34730619 DOI: 10.1590/0001-3765202120201820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Bacteria of the genus Bacillus sp. present the potential for inhibiting various pathogens, making them a promising starting point in the search for new antimicrobial substances. In this study, bacteria were isolated from sediment samples from humid areas of a Natural Conservation Unit in the state of Rio Grande do Sul, Brazil. The isolate Bacillus sp. sed 1.4 was selected for production of antimicrobial activity, and was characterized by MALDI-TOF and 16S rDNA sequencing. Phylogenetic analysis showed that Bacillus sed 1.4 was closely related to Bacillus altitudinis and Bacillus pumilus. The cell-free supernatant was partially purified using ammonium sulfate precipitation, gel filtration chromatography (Sephadex G-200) and an ultrafiltration membrane. Partial purification resulted in specific activity of 769.23 AU/mg, with a molecular mass of approximately 148 kDa. This antimicrobial substance showed stability at 100°C for 5 min, and was inactivated by proteolytic enzymes. An antimicrobial effect against Listeria species was observed. Considering the importance of the Listeria genus in the area of food safety, this antimicrobial activity should be further explored, specifically in the field of dairy products and with a focus on food biopreservation studies.
Collapse
Affiliation(s)
- Luciani Cavalini
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Priscila Jankoski
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| | - Ana Paula F Correa
- Universidade Federal de Roraima, Programa de Pós-graduação em Recursos Naturais-PRONAT, Av. Ene Garcez, 2413, Bairro Aeroporto, 69304-000 Boa Vista, RR, Brazil
| | - Adriano Brandelli
- Universidade Federal do Rio Grande do Sul, Departamento de Ciência dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, Prédio 43.212, 91501-970 Porto Alegre, RS, Brazil
| | - Amanda S DA Motta
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto das Ciências Básicas da Saúde, Rua Sarmento Leite 500, Sala 216, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
22
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
23
|
Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front Microbiol 2021; 12:571212. [PMID: 34025591 PMCID: PMC8139322 DOI: 10.3389/fmicb.2021.571212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Members of the Bacillus pumilus group (abbreviated as the Bp group) are quite diverse and ubiquitous in marine environments, but little is known about correlation with their terrestrial counterparts. In this study, 16 marine strains that we had isolated before were sequenced and comparative genome analyses were performed with a total of 52 Bp group strains. The analyses included 20 marine isolates (which included the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, differentiation, and environmental adaptation. Results Phylogenomic analysis revealed that the marine Bp group strains were grouped into three species: B. pumilus, B. altitudinis and B. safensis. All the three share a common ancestor. However, members of B. altitudinis were observed to cluster independently, separating from the other two, thus diverging from the others. Consistent with the universal nature of genes involved in the functioning of the translational machinery, the genes related to translation were enriched in the core genome. Functional genomic analyses revealed that the marine-derived and the terrestrial strains showed differences in certain hypothetical proteins, transcriptional regulators, K+ transporter (TrK) and ABC transporters. However, species differences showed the precedence of environmental adaptation discrepancies. In each species, land specific genes were found with possible functions that likely facilitate survival in diverse terrestrial niches, while marine bacteria were enriched with genes of unknown functions and those related to transcription, phage defense, DNA recombination and repair. Conclusion Our results indicated that the Bp isolates show distinct genomic features even as they share a common core. The marine and land isolates did not evolve independently; the transition between marine and non-marine habitats might have occurred multiple times. The lineage exhibited a priority effect over the niche in driving their dispersal. Certain intra-species niche specific genes could be related to a strains adaptation to its respective marine or terrestrial environment(s). In summary, this report describes the systematic evolution of 52 Bp group strains and will facilitate future studies toward understanding their ecological role and adaptation to marine and/or terrestrial environments.
Collapse
Affiliation(s)
- Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
24
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
25
|
Like Ginting E, Poluan GG, L Wantania L, Mauren Moko E, Warouw V, S Siby M, Wullur S. Screening and Identification of Sponge-Associated Chitinolytic Bacteria by Forming Chitosan from Manado Bay, Indonesia. Pak J Biol Sci 2021; 24:227-234. [PMID: 33683052 DOI: 10.3923/pjbs.2021.227.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Chitosan can be produced through the enzymatic process catalyzed by chitin deacetylase which can be produced by bacteria. The biotransformation of chitin to chitosan by bacteria is interesting because the process is economical and environmentally friendly. This study described the potential of sponge-associated bacterium capability in degrading chitin and forming chitosan. MATERIALS AND METHODS The bacteria were isolated from sponge Cribrochalina sp. at Manado Bay, Indonesia. In the screening of the chitinase activity of bacteria, chitin media was used. Meanwhile, the transformation of chitin to chitosan was tested by using Chitinase Degrading Activity media. Molecular identification of bacteria was based on 16S rRNA gene sequences. RESULTS The results showed that the SS1, SS2, SS3, SS4 and SS5 bacterial isolates could degrade chitin based on chitinolytic indexes. These five bacteria could also form chitosan exhibited through the presence of chitosan in the form of precipitation in the fermented broth of bacteria. SS1 had the highest chitinase activity based on the chitinolytic index identified as Bacillus subtilis (100% identity), hence it is called B. subtilis strain SS1. The partial rRNA gene sequences data were deposited at GenBank under accession number MN999892. CONCLUSION The bacteria strain isolated from Cribrochalina sp. can be utilized in degrading chitin and form chitosan which could be a promising candidate for an economical and eco-friendly process of chitosan.
Collapse
|
26
|
Tibayrenc M, Ayala FJ. Models in parasite and pathogen evolution: Genomic analysis reveals predominant clonality and progressive evolution at all evolutionary scales in parasitic protozoa, yeasts and bacteria. ADVANCES IN PARASITOLOGY 2021; 111:75-117. [PMID: 33482977 DOI: 10.1016/bs.apar.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The predominant clonal evolution (PCE) model of pathogenic microorganisms postulates that the impact of genetic recombination in those pathogens' natural populations is not enough to erase a persistent phylogenetic signal at all evolutionary scales from microevolution till geological times in the whole ecogeographical range of the species considered. We have tested this model with a set of representative parasitic protozoa, yeasts and bacteria in the light of the most recent genomic data. All surveyed species, including those that were considered as highly recombining, exhibit similar PCE patterns above and under the species level, from macro- to micro-evolutionary scales (Russian doll pattern), suggesting gradual evolution. To our knowledge, it is the first time that such a strong common evolutionary feature among very diverse pathogens has been evidenced. The implications of this model for basic biology and applied research are exposed. These implications include our knowledge on the pathogens' reproductive mode, their population structure, the possibility to type strain and to follow up epidemics (molecular epidemiology) and to revisit pathogens' taxonomy through a flexible use of the phylogenetic species concept (Cracraft, 1983).
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de recherche pour le développement, Montpellier Cedex 5, France.
| | - Francisco J Ayala
- Catedra Francisco Jose Ayala of Science, Technology, and Religion, University of Comillas, Madrid, Spain; 2 Locke Court, Irvine, CA, United States
| |
Collapse
|
27
|
Torres Manno MA, Repizo GD, Magni C, Dunlap CA, Espariz M. The assessment of leading traits in the taxonomy of the Bacillus cereus group. Antonie van Leeuwenhoek 2020; 113:2223-2242. [PMID: 33179199 DOI: 10.1007/s10482-020-01494-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Bacillus cereus sensu lato strains (B. cereus group) are widely distributed in nature and have received interest for decades due to their importance in insect pest management, food production and their positive and negative repercussions in human health. Consideration of practical uses such as virulence, physiology, morphology, or ill-defined features have been applied to describe and classify species of the group. However, current comparative studies have exposed inconsistencies between evolutionary relatedness and biological significance among genomospecies of the B. cereus group. Here, the combined analyses of core-based phylogeny and all versus all Average Nucleotide Identity values based on 2116 strains were conducted to update the genomospecies circumscriptions within B. cereus group. These analyses suggested the existence of 57 genomospecies, 37 of which are novel, thus indicating that the taxonomic identities of more than 39% of the analyzed strains should be revised or updated. In addition, we found that whole-genome in silico analyses were suitable to differentiate genomospecies such as B. anthracis, B. cereus and B. thuringiensis. The prevalence of toxin and virulence factors coding genes in each of the genomospecies of the B. cereus group was also examined, using phylogeny-aware methods at wide-genome scale. Remarkably, Cry and emetic toxins, commonly assumed to be associated with B. thuringiensis and emetic B. paranthracis, respectively, did not show a positive correlation with those genomospecies. On the other hand, anthrax-like toxin and capsule-biosynthesis coding genes were positively correlated with B. anthracis genomospecies, despite not being present in all strains, and with presumably non-pathogenic genomospecies. Hence, despite these features have been so far considered relevant for industrial or medical classification of related species of the B. cereus group, they were inappropriate for their circumscription. In this study, genomospecies of the group were accurately affiliated and representative strains defined, generating a rational framework that will allow comparative analysis in epidemiological or ecological studies. Based on this classification the role of specific markers such as Type VII secretion system, cytolysin, bacillolysin, and siderophores such as petrobactin were pointed out for further analysis.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo D Repizo
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Laboratorio de Resistencia bacteriana a antimicrobianos, Instituto de Biología Molecular y Celular de Rosario (IBR), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christopher A Dunlap
- United States Department of Agriculture, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 1815 North University Street, Peoria, IL, 61604, USA
| | - Martín Espariz
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina.
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina.
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
28
|
Adiguzel A, Ay H, Baltaci MO, Akbulut S, Albayrak S, Omeroglu MA. Genome-based classification of Calidifontibacillus erzurumensis gen. nov., sp. nov., isolated from a hot spring in Turkey, with reclassification of Bacillus azotoformans as Calidifontibacillus azotoformans comb. nov. and Bacillus oryziterrae as Calidifontibacillus oryziterrae comb. nov. Int J Syst Evol Microbiol 2020; 70:6418-6427. [PMID: 33164726 DOI: 10.1099/ijsem.0.004549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, rod-shaped, endospore-forming, motile, aerobic bacterium, designated as P2T, was isolated from a hot spring water sample collected from Ilica-Erzurum, Turkey. Phylogenetic analyses based on 16S rRNA gene sequence comparisons affiliated strain P2T with the genus Bacillus, and the strain showed the highest sequence identity to Bacillus azotoformans NBRC 15712T (96.7 %). However, the pairwise sequence comparisons of the 16S rRNA genes revealed that strain P2T shared only 94.7 % sequence identity with Bacillus subtilis subsp. subtilis NCIB 3610T, indicating that strain P2T might not be a member of the genus Bacillus. The digital DNA-DNA hybridization and average nucleotide identity values between strain P2T and B. azotoformans NBRC 15712T were 19.8 and 74.2 %, respectively. The cell-wall peptidoglycan of strain P2T contained meso-diaminopimelic acid. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminophospholipid, five unidentified phospholipids and two unidentified lipids while the predominant isoprenoid quinone was MK-7. The major fatty acids were iso-C15 : 0 and iso-C16 : 0. The draft genome of strain P2T was composed of 82 contigs and found to be 3.5 Mb with 36.1 mol% G+C content. The results of phylogenomic and phenotypic analyses revealed that strain P2T represents a novel genus in the family Bacillaceae, for which the name Calidifontibacillus erzurumensis gen. nov., sp. nov. is proposed. The type strain of Calidifontibacillus erzurumensis is P2T (=CECT 9886T=DSM 107530T=NCCB 100675T). Based on the results of the present study, it is also suggested that Bacillus azotoformans and Bacillus oryziterrae should be transferred to this novel genus as Calidifontibacillus azotoformans comb. nov. and Calidifontibacillus oryziterrae comb. nov., respectively.
Collapse
Affiliation(s)
- Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Sumeyya Akbulut
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Akif Omeroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|
30
|
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079-1086. [DOI: 10.1038/s41587-020-0501-8] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
|
31
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
32
|
Shah N, Meisel JS, Pop M. Embracing Ambiguity in the Taxonomic Classification of Microbiome Sequencing Data. Front Genet 2019; 10:1022. [PMID: 31681437 PMCID: PMC6811648 DOI: 10.3389/fgene.2019.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
The advent of high throughput sequencing has enabled in-depth characterization of human and environmental microbiomes. Determining the taxonomic origin of microbial sequences is one of the first, and frequently only, analysis performed on microbiome samples. Substantial research has focused on the development of methods for taxonomic annotation, often making trade-offs in computational efficiency and classification accuracy. A side-effect of these efforts has been a reexamination of the bacterial taxonomy itself. Taxonomies developed prior to the genomic revolution captured complex relationships between organisms that went beyond uniform taxonomic levels such as species, genus, and family. Driven in part by the need to simplify computational workflows, the bacterial taxonomies used most commonly today have been regularized to fit within a standard seven taxonomic levels. Consequently, modern analyses of microbial communities are relatively coarse-grained. Few methods make classifications below the genus level, impacting our ability to capture biologically relevant signals. Here, we present ATLAS, a novel strategy for taxonomic annotation that uses significant outliers within database search results to group sequences in the database into partitions. These partitions capture the extent of taxonomic ambiguity within the classification of a sample. The ATLAS pipeline can be found on GitHub [https://github.com/shahnidhi/outlier_in_BLAST_hits]. We demonstrate that ATLAS provides similar annotations to phylogenetic placement methods, but with higher computational efficiency. When applied to human microbiome data, ATLAS is able to identify previously characterized taxonomic groupings, such as those in the class Clostridia and the genus Bacillus. Furthermore, the majority of partitions identified by ATLAS are at the subgenus level, replacing higher-level annotations with specific groups of species. These more precise partitions improve our detection power in determining differential abundance in microbiome association studies.
Collapse
Affiliation(s)
- Nidhi Shah
- Department of Computer Science, University of Maryland, College Park, College Park, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, United States.,University of Maryland Institute for Advanced Computer Studies, College Park, MD, United States
| | - Jacquelyn S Meisel
- Department of Computer Science, University of Maryland, College Park, College Park, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, United States.,University of Maryland Institute for Advanced Computer Studies, College Park, MD, United States.,Center for Health-related Informatics and Bioimaging, University of Maryland, College Park, College Park, MD, United States
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, College Park, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, United States.,University of Maryland Institute for Advanced Computer Studies, College Park, MD, United States.,Center for Health-related Informatics and Bioimaging, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
33
|
Ávila C, Carvalho B. Silage fermentation—updates focusing on the performance of micro‐organisms. J Appl Microbiol 2019; 128:966-984. [DOI: 10.1111/jam.14450] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- C.L.S. Ávila
- Department of Animal Science Federal University of Lavras Lavras MG Brazil
| | - B.F. Carvalho
- Department of Biology Federal University of Lavras Lavras MG Brazil
| |
Collapse
|
34
|
Kaya-Ongoto MD, Kayath CA, Nguimbi E, Lebonguy AA, Nzaou SAE, Elenga Wilson PS, Ahombo G. Genetic Clearness Novel Strategy of Group I Bacillus Species Isolated from Fermented Food and Beverages by Using Fibrinolytic Enzyme Gene Encoding a Serine-Like Enzyme. J Nucleic Acids 2019; 2019:5484896. [PMID: 31236291 PMCID: PMC6545797 DOI: 10.1155/2019/5484896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/28/2019] [Indexed: 11/18/2022] Open
Abstract
Fibrinolytic enzyme gene (fibE) is widely conserved among Bacillus spp. belonging to group I species. This is encoding a serine-like enzyme (FibE) secreted in extracellular medium. This present work aims to assess the molecular usefulness of this novel conserved housekeeping gene among group I Bacillus spp. to identify and discriminate some related strains in traditional fermented food and beverages in Republic of Congo. First of all 155 isolates have been screened for enzymatic activities using caseinolytic assays. PCR techniques and nested PCR method using specific primers and correlated with 16S RNA sequencing were used. Blotting techniques have been performed for deep comparison with molecular methods. As a result B. amyloliquefaciens (1), B. licheniformis (1), B. subtilis (1), B. pumilus (3), B. altitudinis (2), B. atrophaeus (1), and B. safensis (3) have been specifically identified among 155 isolates found in fermented food and beverages. Genetic analysis and overexpression of glutathione S-transferases (GSTs) fused to mature protein of FibE in Escherichia coli BL21 and TOP10 showed 2-fold higher enzymatic activities by comparison with FibE wild type one. Immunodetection should be associated but this does not clearly discriminate Bacillus belonging to group I.
Collapse
Affiliation(s)
- Moïse Doria Kaya-Ongoto
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
| | - Christian Aimé Kayath
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien NGOUABI, BP 69, Brazzaville, Congo
| | - Etienne Nguimbi
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien NGOUABI, BP 69, Brazzaville, Congo
| | - Aimé Augustin Lebonguy
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
| | - Stech Anomène Eckzechel Nzaou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
| | - Paola Sandra Elenga Wilson
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, BP 2400, Brazzaville, Congo
| | - Gabriel Ahombo
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien NGOUABI, BP 69, Brazzaville, Congo
| |
Collapse
|
35
|
Verma A, Pal Y, Ojha AK, Kumari M, Khatri I, Rameshkumar N, Schumann P, Dastager SG, Mayilraj S, Subramanian S, Krishnamurthi S. Taxonomic insights into the phylogeny of Bacillus badius and proposal for its reclassification to the genus Pseudobacillus as Pseudobacillus badius comb. nov. and reclassification of Bacillus wudalianchiensis Liu et al., 2017 as Pseudobacillus wudalianchiensis comb. nov. Syst Appl Microbiol 2019; 42:360-372. [DOI: 10.1016/j.syapm.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 11/26/2022]
|
36
|
Hernández-González IL, Moreno-Hagelsieb G, Olmedo-Álvarez G. Environmentally-driven gene content convergence and the Bacillus phylogeny. BMC Evol Biol 2018; 18:148. [PMID: 30285626 PMCID: PMC6171248 DOI: 10.1186/s12862-018-1261-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background Members of the Bacillus genus have been isolated from a variety of environments. However, the relationship between potential metabolism and the niche from which bacteria of this genus have been isolated has not been extensively studied. The existence of a monophyletic aquatic Bacillus group, composed of members isolated from both marine and fresh water has been proposed. Here, we present a phylogenetic/phylogenomic analysis to investigate the potential relationship between the environment from which group members have been isolated and their evolutionary origin. We also carried out hierarchical clustering based on functional content to test for potential environmental effects on the genetic content of these bacteria. Results The phylogenetic reconstruction showed that Bacillus strains classified as aquatic have evolutionary origins in different lineages. Although we observed the presence of a clade consisting exclusively of aquatic Bacillus, it is not comprised of the same strains previously reported. In contrast to phylogeny, clustering based on the functional categories of the encoded proteomes resulted in groups more compatible with the environments from which the organisms were isolated. This evidence suggests a detectable environmental influence on bacterial genetic content, despite their different evolutionary origins. Conclusion Our results suggest that aquatic Bacillus species have polyphyletic origins, but exhibit convergence at the gene content level. Electronic supplementary material The online version of this article (10.1186/s12862-018-1261-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismael L Hernández-González
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., Waterloo, N2L 3C5, Ontario, Canada.
| | - Gabriela Olmedo-Álvarez
- Department of Genetic Engineering, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carr. Irapuato-Leon, Irapuato, 36824, Guanajuato, Mexico.
| |
Collapse
|
37
|
Lazarte JN, Lopez RP, Ghiringhelli PD, Berón CM. Bacillus wiedmannii biovar thuringiensis: A Specialized Mosquitocidal Pathogen with Plasmids from Diverse Origins. Genome Biol Evol 2018; 10:2823-2833. [PMID: 30285095 PMCID: PMC6203079 DOI: 10.1093/gbe/evy211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus sensu lato also known as B. cereus group is composed of an ecologically diverse bacterial group with an increasing number of related species, some of which are medically or agriculturally important. Numerous efforts have been undertaken to allow presumptive differentiation of B. cereus group species from one another. FCC41 is a Bacillus sp. strain toxic against mosquito species like Aedes aegypti, Aedes (Ochlerotatus) albifasciatus, Culex pipiens, Culex quinquefasciatus, and Culex apicinus, some of them responsible for the transmission of vector-borne diseases. Here, we report the complete genome sequence of FCC41 strain, which consists of one circular chromosome and eight circular plasmids ranging in size from 8 to 490 kb. This strain harbors six crystal protein genes, including cry24Ca, two cry4-like and two cry52-like, a cry41-like parasporin gene and multiple virulence factors. The phylogenetic analysis of the whole-genome sequence of this strain with molecular approaches places this strain into the Bacillus wiedmannii cluster. However, according with phenotypical characteristics such as the mosquitocidal activity due to the presence of Cry proteins found in the parasporal body and cry genes encoded in plasmids of different sizes, indicate that this strain could be renamed as B. wiedmannii biovar thuringiensis strain FCC41.
Collapse
Affiliation(s)
- J Nicolás Lazarte
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - Rocio P Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - P Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| |
Collapse
|
38
|
Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol 2018; 9:67. [PMID: 29497402 PMCID: PMC5819568 DOI: 10.3389/fmicb.2018.00067] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the "Tuberculosis-Simiae," "Terrae," "Triviale," "Fortuitum-Vaccae," and "Abscessus-Chelonae" clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the "Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the "Fortuitum-Vaccae" clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the "Tuberculosis-Simiae" clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the "Fortuitum-Vaccae," "Terrae," "Triviale," and "Abscessus-Chelonae" clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, CA, Canada
| | | | | |
Collapse
|
39
|
Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB. Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biol Evol 2018; 10:108-124. [PMID: 29272410 PMCID: PMC5765554 DOI: 10.1093/gbe/evx270] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them.
Collapse
Affiliation(s)
- Patrícia H Brito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Portugal
| | - Bastien Chevreux
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | - Cláudia R Serra
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Ghislain Schyns
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisbon, Portugal
| |
Collapse
|
40
|
Kitagawa M, Shiraishi T, Yamamoto S, Kutomi R, Ohkoshi Y, Sato T, Wakui H, Itoh H, Miyamoto A, Yokota SI. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains. AMB Express 2017; 7:127. [PMID: 28641406 PMCID: PMC5479777 DOI: 10.1186/s13568-017-0430-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
Abstract
We recently isolated a tumoricidal peptide from Natto, a Japanese traditional fermented food. In the present study, antimicrobial activity of the Natto peptide was examined. The peptide consisted of 45 amino acid residues, and its structure was predicted to be rich in α-helix. It excreted antimicrobial activity only against Streptococcus pneumoniae and Bacillus subtilis group (B. subtilis, Bacillus pumilus, and Bacillus licheniformis). Lesser antimicrobial activity was observed for Streptococcus species other than S. pneumoniae. Hemolysate or hemin was required for the antimicrobial activity of the peptide. The Natto peptide damages the cell membrane of B. subtilis. On the other hand, chain morphology was induced in S. pneumoniae, which is naturally diplococcus, during the early phases of the Natto peptide treatment; following that the cells were rapidly lysed. This suggested that the Natto peptide displayed a novel narrow spectrum of bactericidal activity and inhibited cell separation during cell division of S. pneumoniae.
Collapse
Affiliation(s)
- Manabu Kitagawa
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
- Department of Pharmaceutical Health Care and Sciences, Sapporo Medical University School of Medicine, Sapporo, 060-8543 Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| | - Ryosuke Kutomi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| | - Yasuo Ohkoshi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
- Department of Clinical Laboratory, NTT East Sapporo Hospital, Sapporo, 060-0061 Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| | - Hideki Wakui
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502 Japan
| | - Hideaki Itoh
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502 Japan
| | - Atsushi Miyamoto
- Department of Pharmaceutical Health Care and Sciences, Sapporo Medical University School of Medicine, Sapporo, 060-8543 Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556 Japan
| |
Collapse
|
41
|
Draft Genome Sequence of the Naturally Competent Bacillus simplex Strain WY10. GENOME ANNOUNCEMENTS 2017; 5:5/46/e01295-17. [PMID: 29146837 PMCID: PMC5690344 DOI: 10.1128/genomea.01295-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We sequenced a naturally competent bacterial isolate, WY10, cultured from a Wyoming soil sample. Sequence analysis revealed that WY10 is a novel strain of Bacillus simplex. To our knowledge, WY10 is the first B. simplex strain to be characterized as naturally competent for DNA uptake by transformation.
Collapse
|
42
|
Pan T, He H, Wang X, Shen Y, Zhao J, Yan K, Wang X, Liu C, Zhang J, Xiang W. Bacillus solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4449-4455. [DOI: 10.1099/ijsem.0.002312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tong Pan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Hairong He
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaochong Wang
- Shenzhen Institute for Drug Control, ShenZhen 518057, PR China
| | - Yibo Shen
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Ji Zhang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
43
|
Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP. Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 2017; 67:4435-4442. [PMID: 28920841 DOI: 10.1099/ijsem.0.002310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-positive, rod-shaped and endospore-forming bacteria that represent a single species, designated strains KJ1-10-99T and KJ1-10-93, were isolated from a saline desert of Little Rann of Kutch, Gujarat, India. Analysis of 16S rRNA gene sequences revealed that the isolates belonged to the family Bacillaceae and were closely related to each other with 16S rRNA gene sequence similarity of 99.9 %. However, these two isolates formed a novel phylogenetic branch within this family. Both strains were aerobic, catalase and oxidase positive, and could grow optimally at 37 °C and pH 9. Further, strains KJ1-10-99T and KJ1-10-93 grew optimally at a NaCl concentration of 7.5 and 15 % (w/v), respectively. Both strains shared highest sequence similarity with Fermentibacillus polygoni IEB3T (96.90 %) followed by Bacillus nanhaiisediminis NH3T (96.3 %) and Bacillus alkalinitrilicus ANL-iso4T (96.3 %). The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17:0, C16 : 0, and iso-C15 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol in both strains. The predominant isoprenoid quinone was MK-7 in both the strains. The peptidoglycan contained meso-diaminopimelic acid (meso-DAP) as the diagnostic diamino acid. The DNA G+C content of strains KJ1-10-99T and KJ1-10-93 were 48.7 and 48.9 mol% respectively. Both strains could be distinguished from closest phylogenetic neighbours based on a number of phenotypic properties. On the basis of polyphasic taxonomic analysis and phylogenetic data, we conclude that the strains KJ1-10-99T (=LMG 29918T=KCTC 33878T) and KJ1-10-93 (=LMG 29919=KCTC 33877) represent a novel species of a new genus in the family Bacillaceae, order Bacillales, for which the name Desertibacillus haloalkaliphilus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India
| | - M Azmatunnisa Begum
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University, Kukatpally, Hyderabad 500085, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University, Kukatpally, Hyderabad 500085, India
| | - Venkata Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India
| |
Collapse
|
44
|
Verma A, Pal Y, Khatri I, Ojha AK, Gruber-Vodicka H, Schumann P, Dastager S, Subramanian S, Mayilraj S, Krishnamurthi S. Examination into the taxonomic position of Bacillus thermotolerans Yang et al., 2013, proposal for its reclassification into a new genus and species Quasibacillus thermotolerans gen. nov., comb. nov. and reclassification of B. encimensis Dastager et al., 2015 as a later heterotypic synonym of B. badius. Syst Appl Microbiol 2017; 40:411-422. [PMID: 28947104 DOI: 10.1016/j.syapm.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022]
Abstract
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (=CCTCC AB2012108T=KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.
Collapse
Affiliation(s)
- Ashish Verma
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yash Pal
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Indu Khatri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Anup Kumar Ojha
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Harald Gruber-Vodicka
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Peter Schumann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, GmBH, Inhoffenstrasse 7b, D-38124 Braunschweig, Germany
| | - Syed Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India
| | | | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
45
|
In Situ Cultured Bacterial Diversity from Iron Curtain Cave, Chilliwack, British Columbia, Canada. DIVERSITY 2017. [DOI: 10.3390/d9030036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Evolutionary processes and environmental factors underlying the genetic diversity and lifestyles of Bacillus cereus group bacteria. Res Microbiol 2017; 168:309-318. [DOI: 10.1016/j.resmic.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
|
47
|
Fiedoruk K, Drewnowska JM, Daniluk T, Leszczynska K, Iwaniuk P, Swiecicka I. Ribosomal background of the Bacillus cereus group thermotypes. Sci Rep 2017; 7:46430. [PMID: 28406161 PMCID: PMC5390287 DOI: 10.1038/srep46430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
In this study we reconstructed the architecture of Bacillus cereus sensu lato population based on ribosomal proteins, and identified a link between the ribosomal proteins’ variants and thermal groups (thermotypes) of the bacilli. The in silico phyloproteomic analysis of 55 ribosomal proteins (34 large and 21 small subunit r-proteins) of 421 strains, representing 14 well-established or plausible B. cereus sensu lato species, revealed several ribosomal clusters (r-clusters), which in general were well correlated with the strains’ affiliation to phylogenetic/thermal groups I–VII. However, a conformity and possibly a thermal characteristic of certain phylogenetic groups, e.g. the group IV, were not supported by a distribution of the corresponding r-clusters, and consequently neither by the analysis of cold-shock proteins (CSPs) nor by a content of heat shock proteins (HSPs). Furthermore, a preference for isoleucine and serine over valine and alanine in r-proteins along with a lack of HSP16.4 were recognized in non-mesophilic thermotypes. In conclusion, we suggest that the observed divergence in ribosomal proteins may be connected with an adaptation of B. cereus sensu lato members to various thermal niches.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Justyna M Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Iwaniuk
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland.,Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| |
Collapse
|
48
|
Xue X, Davis MC, Steeves T, Bishop A, Breen J, MacEacheron A, Kesthely CA, Hsu F, MacLellan SR. Characterization of a protein-protein interaction within the SigO-RsoA two-subunit σ factor: the σ70 region 2.3-like segment of RsoA mediates interaction with SigO. MICROBIOLOGY-SGM 2016; 162:1857-1869. [PMID: 27558998 DOI: 10.1099/mic.0.000358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
σ factors are single subunit general transcription factors that reversibly bind core RNA polymerase and mediate gene-specific transcription in bacteria. Previously, an atypical two-subunit σ factor was identified that activates transcription from a group of related promoters in Bacillus subtilis. Both of the subunits, named SigO and RsoA, share primary sequence similarity with the canonical σ70 family of σ factors and interact with each other and with RNA polymerase subunits. Here we show that the σ70 region 2.3-like segment of RsoA is unexpectedly sufficient for interaction with the amino-terminus of SigO and the β' subunit. A mutational analysis of RsoA identified aromatic residues conserved amongst all RsoA homologues, and often amongst canonical σ factors, that are particularly important for the SigO-RsoA interaction. In a canonical σ factor, region 2.3 amino acids bind non-template strand DNA, trapping the promoter in a single-stranded state required for initiation of transcription. Accordingly, we speculate that RsoA region 2.3 protein-binding activity likely arose from a motif that, at least in its ancestral protein, participated in DNA-binding interactions.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Maria C Davis
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Thomas Steeves
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Adam Bishop
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Jillian Breen
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | | | - FoSheng Hsu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Shawn R MacLellan
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
49
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Liu Y, Qin W, Liu Q, Zhang J, Li H, Xu S, Ren P, Tian L, Li W. Genome-wide identification and characterization of macrolide glycosyltransferases from a marine-derived Bacillus strain and their phylogenetic distribution. Environ Microbiol 2016; 18:4770-4781. [PMID: 27130432 DOI: 10.1111/1462-2920.13367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
Clarifying glycosyltrasferases (GTs) function is of significance for the development of GT inhibitors as drugs, and the use of GTs to glycodiversify small molecules in the search of drug leads. While many Actinomyces natural-product GTs had been functionally characterized, our understanding towards Bacillus natural-product GTs is so far very limited. Herein, genome-wide identification of macrolide GT genes from marine-derived Bacillus methylotrophicus B-9987 revealed the presence of three macrolide GT genes bmmGT1-3. While bmmGT1 was previously revealed to be involved in the biosynthesis of trans-acyltransferase (AT) polyketides compounds macrolactins (MLNs) and bacillaenes (BAEs), the functions of bmmGT2 and bmmGT3 were probed, demonstrating that they are capable to biochemically catalyze glycosylation of MLNs and BAEs as well but interestingly with different regioselectivity, affording four new MLNs analogs. Notably, further genome mining revealed that the orthologs of these three macrolide GT genes showed a regular distribution in the subtilis- and the cereus-clade Bacillus strains; interestingly, bmmGT1 orthologs only occurred in the subtilis-clade Bacillus, and they were also found in the genomes of Streptomyces strains, suggesting their close phylogenetic relationship. These results provide the first significant insight into the important roles of Bacillus macrolide GTs in the biology of the species.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wen Qin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Quanquan Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jun Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Ren
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Li Tian
- First Institute of Oceanography, State Oceanic Administration, 6 Xianxialing Road Qingdao, SD, 266061, P. R. China.,Qingdao University of Science & Technology, 53 Zhen Zhou Road Qingdao, SD, 266042, P. R. China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|