1
|
Li Y, Guo T, Sun L, Wang ET, Young JPW, Tian CF. Phylogenomic analyses and reclassification of the Mesorhizobium complex: proposal for 9 novel genera and reclassification of 15 species. BMC Genomics 2024; 25:419. [PMID: 38684951 PMCID: PMC11057113 DOI: 10.1186/s12864-024-10333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUD The genus Mesorhizobium is shown by phylogenomics to be paraphyletic and forms part of a complex that includes the genera Aminobacter, Aquamicrobium, Pseudaminobacter and Tianweitania. The relationships for type strains belong to these genera need to be carefully re-evaluated. RESULTS The relationships of Mesorhizobium complex are evaluated based on phylogenomic analyses and overall genome relatedness indices (OGRIs) of 61 type strains. According to the maximum likelihood phylogenetic tree based on concatenated sequences of 539 core proteins and the tree constructed using the bac120 bacterial marker set from Genome Taxonomy Database, 65 type strains were grouped into 9 clusters. Moreover, 10 subclusters were identified based on the OGRIs including average nucleotide identity (ANI), average amino acid identity (AAI) and core-proteome average amino acid identity (cAAI), with AAI and cAAI showing a clear intra- and inter-(sub)cluster gaps of 77.40-80.91% and 83.98-86.16%, respectively. Combined with the phylogenetic trees and OGRIs, the type strains were reclassified into 15 genera. This list includes five defined genera Mesorhizobium, Aquamicrobium, Pseudaminobacter, Aminobacterand Tianweitania, among which 40/41 Mesorhizobium species and one Aminobacter species are canonical legume microsymbionts. The other nine (sub)clusters are classified as novel genera. Cluster III, comprising symbiotic M. alhagi and M. camelthorni, is classified as Allomesorhizobium gen. nov. Cluster VI harbored a single symbiotic species M. albiziae and is classified as Neomesorhizobium gen. nov. The remaining seven non-symbiotic members were proposed as: Neoaquamicrobium gen. nov., Manganibacter gen. nov., Ollibium gen. nov., Terribium gen. nov., Kumtagia gen. nov., Borborobacter gen. nov., Aerobium gen. nov.. Furthermore, the genus Corticibacterium is restored and two species in Subcluster IX-1 are reclassified as the member of this genus. CONCLUSION The Mesorhizobium complex are classified into 15 genera based on phylogenomic analyses and OGRIs of 65 type strains. This study resolved previously non-monophyletic genera in the Mesorhizobium complex.
Collapse
Affiliation(s)
- Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Jiaodong Microbial Resource Center of Yantai University, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| | - Tingyan Guo
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Jiaodong Microbial Resource Center of Yantai University, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Jiaodong Microbial Resource Center of Yantai University, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - En-Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, 11340, México
| | - J Peter W Young
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chang-Fu Tian
- State Key Laboratory of Plant Environmental Resilience, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Yue Q, Tang C, Li X, Lv W, Liu H, Yue H, Chen Y. Response of sulfide autotrophic denitrification process and microbial community to oxytetracycline stress. CHEMOSPHERE 2024; 351:141192. [PMID: 38218239 DOI: 10.1016/j.chemosphere.2024.141192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The coexistence of antibiotics with sulfide and nitrate is common in sewage. Thus, this study explored the removal performance of nitrate and sulfide, and the response of extracellular polymer substances (EPS) and the microbial community to the sulfide autotrophic denitrification (SAD) process under oxytetracycline (OTC) stress. In Phase Ⅰ, the SAD system showed favouranle performance (nitrate removal rate > 92.57%, sulfide removal rate > 97.75%). However, in Phase Ⅳ, at OTC concentrations of 10, 15, and 20 mg/L, the NRE decreased to 76.13%, 40.71%, 11.37%, respectively, and the SRE decreased to 97.58%, 97.09%, 92.84%, respectively. At OTC concentrations of 0, 10, 15, and 20 mg/L, the EPS content were 1.62, 1.75, 2.03, and 1.42 mg/gVSS, respectively. The results showed that SAD performance gradually deteriorated under OTC stress. In particular, when the OTC concentration was 20 mg/L, the EPS content was lower than that of the control test, which could be attributed to the occurrence of microbial death. Finally, high-throughput sequencing results showed that OTC exposure led to gradual domination by heterotrophic denitrifying bacteria.
Collapse
Affiliation(s)
- Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hanpeng Yue
- Gansu Qilianshan Pharmaceutical Co., Ltd, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Mustaq S, Moin A, Pandit B, Tiwary BK, Alam M. Phyllobacteriaceae: a family of ecologically and metabolically diverse bacteria with the potential for different applications. Folia Microbiol (Praha) 2024; 69:17-32. [PMID: 38038797 DOI: 10.1007/s12223-023-01107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-β-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.
Collapse
Affiliation(s)
- Saqlain Mustaq
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, 700160, Kolkata, West Bengal, India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, 700160, Kolkata, West Bengal, India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, 700160, Kolkata, West Bengal, India
- Department of Botany, Surendranath College, 24/2 MG Road, 700009, Kolkata, West Bengal, India
| | - Bipransh Kumar Tiwary
- Department of Microbiology, North Bengal St. Xavier's College, Rajganj, 735135, Jalpaiguri, West Bengal, India
| | - Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, 700160, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Effects of reducing, stabilizing, and antibiotic agents on "Candidatus Kuenenia stuttgartiensis". Appl Microbiol Biotechnol 2023; 107:1829-1843. [PMID: 36752812 PMCID: PMC10006275 DOI: 10.1007/s00253-023-12375-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Anaerobic ammon ium oxidizing (anammox) bacteria oxidize ammonium and reduce nitrite, producing N2, and could play a major role in energy-optimized wastewater treatment. However, sensitivity to various environmental conditions and slow growth currently hinder their wide application. Here, we attempted to determine online the effect of environmental stresses on anammox bacteria by using an overnight batch activity test with whole cells, in which anammox activity was calculated by quantifying N2 production via headspace-pressure monitoring. A planktonic mixed culture dominated by "Candidatus Kuenenia stuttgartiensis" strain CSTR1 was cultivated in a 30-L semi-continuous stirring tank reactor. In overnight resting-cell anammox activity tests, oxygen caused strong inhibition of anammox activity, which was reversed by sodium sulfite (30 µM). The tested antibiotics sulfamethoxazole, kanamycin, and ciprofloxacin elicited their effect on a dose-dependent manner; however, strain CSTR1 was highly resistant to sulfamethoxazole. Anammox activity was improved by activated carbon and Fe2O3. Protein expression analysis from resting cells after anammox activity stimulation revealed that NapC/NirT family cytochrome c (KsCSTR_12840), hydrazine synthase, hydrazine dehydrogenase, hydroxylamine oxidase, and nitrate:nitrite oxidoreductase were upregulated, while a putative hydroxylamine oxidoreductase HAO (KsCSTR_49490) was downregulated. These findings contribute to the growing knowledge on anammox bacteria physiology, eventually leading to the control of anammox bacteria growth and activity in real-world application. KEY POINTS: • Sulfite additions can reverse oxygen inhibition of the anammox process • Anammox activity was improved by activated carbon and ferric oxide • Sulfamethoxazole marginally affected anammox activity.
Collapse
|
5
|
Draft Genome Sequence of a Sulfur-Oxidizing Bacterium, Aquamicrobium lusatiense NLF2-7, Isolated from Livestock Wastewater. Microbiol Resour Announc 2023; 12:e0079922. [PMID: 36541808 PMCID: PMC9872692 DOI: 10.1128/mra.00799-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Here, we report the draft genome sequence of Aquamicrobium lusatiense NLF2-7, a Gram-negative, aerobic, non-flagellum-forming, rod-shaped bacterium that was isolated from livestock wastewater in South Korea. The assembled genome sequence is 5,201,486 bp, with 4,972 protein-coding sequences in 12 contigs, and possess the genes for the sulfur oxidation pathway.
Collapse
|
6
|
Arslan M, Müller JA, Gamal El-Din M. Aerobic naphthenic acid-degrading bacteria in petroleum-coke improve oil sands process water remediation in biofilters: DNA-stable isotope probing reveals methylotrophy in Schmutzdecke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151961. [PMID: 34843771 DOI: 10.1016/j.scitotenv.2021.151961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in treatment of oil sands process water (OSPW) via biofiltration with petroleum coke (PC) as a substratum. In fixed bed biofilters (FBBs) with PC, the dominance of anaerobic digestion of dissolved organics results in poor removal of naphthenic acids (NAs) along with a high degree of methanogenesis. In this study, the operation of FBBs was modified to improve OSPW remediation by supporting the filtering bed with aerobic naphthenic acid-degrading bacteria treating aerated OSPW (FBBbioaugmentation). The results were compared with a biofilter operated under controlled conditions (FBBcontrol). To this end, a consortium of three aerobic NAs-degrading bacterial strains was immobilized on PC as a top layer (10 cm). These bacteria were pre-screened for growth on 15 different NAs surrogates as a sole carbon source, and for the presence of catabolic genes coding alkane hydroxylase (CYP153) and alkane monooxygenase (alkB) enzymes. The results illustrated that biofiltration in FBBbioaugmentation removed 32% of classical NAs in 15 days; while in the FBBcontrol, degradation was limited to 19%. The degradation of fluorophore (aromatic) compounds was also improved from 16% to 39% for single ring (OI), 22% to 29% for double ring (OII), and 15% to 23% for three rings (OIII) compounds. DNA-Stable Isotope Probing revealed that potential hydrocarbons degraders such as Pseudomonas (inoculated), Pseudoxanthomonas (indigenous) were present up to 9.0% in the 13C-labelled DNA fraction. Furthermore, a high abundance of methylotrophs was observed in the Schmutzdecke, with Methylobacillus comprising more than two-third of the total community. This study shows that bioaugmentation rapidly improved OSPW remediation. Aeration mostly contributed to methane consumption in the top layer, thus minimizing its release into the environment.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
7
|
Aquamicrobium zhengzhouense sp. nov., a Bacterium Isolated from Farmland Soil Applied with Amino Acid Fertilizer. Curr Microbiol 2021; 78:3798-3803. [PMID: 34387738 DOI: 10.1007/s00284-021-02600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
A novel Gram-stain-negative, rod-shaped, strictly aerobic, non-motile bacterium, designated strain cd-1T, was isolated from a farmland soil applied with amino acid fertilizer in Zhengzhou, Henan province, China. The optimum growth of strain cd-1T occurred at 30 °C, pH 7.0 in Luria-Bertani (LB) broth without NaCl supplement. Phylogenetic analysis based on 16S rRNA gene sequences indicated that cd-1T is member of the genus Aquamicrobium, and formed a separate branch with Aquamicrobium aerolatum DSM 21857T (96.5%) and Aquamicrobium soli KCTC 52165T (95.7%). The draft genome sequencing revealed a DNA G + C content of 59.2 mol% and Q-10 was the predominant respiratory quinone. The major cellular fatty acids were identified as C18:1 ω7c (35.8%), C19:0 cyclo ω8c (32.1%), and C18:1 ω7c 11-methyl (5.2%). The polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylmonomethylethanolamine. Average nucleotide identity (ANI) and the digital DNA-DNA hybridizations (dDDH) for draft genomes between strain cd-1T and KCTC 52165T were 71.0% and 19.9%, respectively, the values for strain cd-1T and DSM 21857T were 73.4% and 20.6%. Based on the physiological and biochemical characteristics, phylogenetic and chemotaxonomic analysis, strain cd-1T is considered to represent a novel species of the genus Aquamicrobium, for which the name Aquamicrobium zhengzhouense sp. nov. is proposed. The type strain is cd-1T (= KCTC 82182T = CCTCC M 2018904T).
Collapse
|
8
|
Chronic endophthalmitis from Aquamicrobium lusatiense. Am J Ophthalmol Case Rep 2021; 22:101067. [PMID: 33732953 PMCID: PMC7944030 DOI: 10.1016/j.ajoc.2021.101067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose To report a case of chronic endophthalmitis caused by Aquamicrobium lusatiense following phacoemulsification surgery. Observations A 71 year-old woman was referred for chronic ocular inflammation after cataract surgery. Serologic testing was negative for common infectious etiologies. Her condition deteriorated on immune-modulating therapy prompting vitreous biopsy, which confirmed infection with A. lusatiense. She was managed successfully with intravitreal antibiotic pharmacotherapy and intraocular lens explantation. Conclusion and Importance This is the first reported case of A. lusatiense causing endophthalmitis, or disease in a human, in the literature.
Collapse
|
9
|
Barak H, Brenner A, Sivan A, Kushmaro A. Temporal distribution of microbial community in an industrial wastewater treatment system following crash and during recovery periods. CHEMOSPHERE 2020; 258:127271. [PMID: 32535444 DOI: 10.1016/j.chemosphere.2020.127271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Water and soil contamination by industrial wastes is a global concern. Biological treatment of industrial wastewater using bioreactors allows the removal of organic matter and nutrients and enables either reuse or safe discharge. Wastewater bioremediation depends in part on the microbial communities present in the bioreactor. To ascertain which communities may play a role in the remediation process, the present study investigates the microbial community structure and diversity of microorganisms found in a full-scale membrane bioreactor (MBR) for industrial wastewater treatment. The study was carried out using high-throughput data observations following a failure (crash) of the MBR and during the extended recovery of the process. Results revealed a positive correlation between the MBR's ability to remove organic matter and its microbial community richness. The significant changes in relative microbial abundance between crash and recovery periods of the MBR revealed the important role of specific bacterial genera in wastewater treatment processes. A whole-genome metagenomics based comparison showed a clear difference in microbial makeup between two functional periods of MBR activity. The crash period was characterized by abundance in bacteria belonging to Achromobacter, Acinetobacter, Halomonas, Pseudomonas and an uncultured MBAE14. The recovery period on the other hand was characterized by Aquamicrobium and by Wenzhouxiangella marina. Our study also revealed some interesting functional pathways characterizing the microbial communities from the two periods of bioreactor function, such as Nitrate and Sulfate reduction pathways. These differences indicate the connection between the bacterial diversity of the MBR and its efficiency to remove TOC.
Collapse
Affiliation(s)
- Hana Barak
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Asher Brenner
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alex Sivan
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Pascual C, Akmirza I, Pérez R, Arnaiz E, Muñoz R, Lebrero R. Trimethylamine abatement in algal-bacterial photobioreactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9028-9037. [PMID: 31919828 DOI: 10.1007/s11356-019-07369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Trimethylamine (TMA) is an odorous volatile organic compound emitted by industries. Algal-based biotechnologies have been proven as a feasible alternative for wastewater treatment, although their application to abate polluted air emissions is still scarce. This work comparatively assessed the removal of TMA in a conventional bacterial bubble column bioreactor (BC) and a novel algal-bacterial bubble column photobioreactor (PBC). The PBC exhibited a superior TMA abatement performance compared to the conventional BC. In this sense, the BC reached a removal efficiency (RE) and an elimination capacity (EC) of 78% and 12.1 g TMA m-3 h-1, respectively, while the PBC achieved a RE of 97% and a EC of 16.0 g TMA m-3·h-1 at an empty bed residence time (EBRT) of 2 min and a TMA concentration ~500 mg m-3. The outstanding performance of the PBC allowed to reduce the operating EBRT to 1.5 and 1 min while maintaining high REs of 98 and 94% and ECs of 21.2 and 28.1 g m-3·h-1, respectively. Moreover, the PBC improved the quality of the gas and liquid effluents discharged, showing a net CO2 consumption and decreasing by ~ 30% the total nitrogen concentration in the liquid effluent via biomass assimilation. A high specialization of the bacterial community was observed in the PBC, Mumia and Aquamicrobium sp. being the most abundant genus within the main phyla identified. GraphicalAbstract.
Collapse
Affiliation(s)
- Celia Pascual
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Ilker Akmirza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
- Department of Environmental Engineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Esther Arnaiz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
11
|
Degradation performance and microbial community analysis of microbial electrolysis cells for erythromycin wastewater treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Wei Y, Cao J, Yao H, Mao H, Zhu K, Li M, Liu R, Fang J. Paracoccus sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2019; 69:1035-1040. [DOI: 10.1099/ijsem.0.003265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel marine Gram-stain-negative, non-spore-forming, motile, aerobic, coccoid or ovoid bacterium, designated as strain DSL-16T, was isolated from a tidal flat sediment on the East China Sea and characterized phylogenetically and phenotypically. Optimal growth of the strain occurred at 35 °C (range 4–40 °C), at pH 6 (range 5–11) and with 4 % (w/v) NaCl (range 1–14 %). The nearest phylogenetic neighbour was
Paracoccus
seriniphilus
DSM 14827T (98.2 % 16S rRNA gene sequence similarity). The digital DNA–DNA hybridization value between strain DSL-16T and
P. seriniphilus
DSM 14827T was 19.5±2.2 %. The average nucleotide identity value between strain DSL-16T and
P. seriniphilus
DSM 14827T was 83.6 %. The sole respiratory ubiquinone was Q-10. The major polar lipids were phosphatidylmonomethylethanolamine (PME), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), diphosphatidyglycerol (DPG) and glycolipid (GL). The predominant cellular fatty acids of strain DSL-16T were C18 : 1ω7c, C18 : 0 and 11-methyl C18 : 1ω7c. The G+C content of the genomic DNA was 64.5 mol%. The combined genotypic and phenotypic data indicated that strain DSL-16T represents a novel species of the genus
Paracoccus
, for which the name
Paracoccus
sediminilitoris sp. nov. is proposed. The type strain is DSL-16T (=KCTC 62644T=MCCC 1K03534T).
Collapse
Affiliation(s)
- Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Huimin Yao
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China
| | - Haiyan Mao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Kelei Zhu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Meng Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
13
|
Cheng Z, Wei Y, Zhang Q, Zhang J, Lu T, Pei Y. Enhancement of surfactant biodegradation with an anaerobic membrane bioreactor by introducing microaeration. CHEMOSPHERE 2018; 208:343-351. [PMID: 29883868 DOI: 10.1016/j.chemosphere.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
In controlled ecological life support system (CELSS), 100% water recycle efficiency is needed. Both water and nutrients in wastewater needs reclaiming. In an anaerobic membrane bioreactor (AnMBR) designed to hydrolyze organic matters and convert organic nitrogen, accumulation of anionic surfactants and organic compounds was observed in the supernatant. To solve the problem, microaeration which had rarely been reported to enhance surfactants biodegradation in anaerobic process was introduced and it was proved to be an effective approach that resulted in concentrations of surfactants and soluble chemical oxygen demand (SCOD) in the supernatant decreasing from 9000 mg/L and 40000 mg/L to 2000 mg/L and 10000 mg/L, respectively. And the degradations followed the kinetic characteristics of zero order reaction with R2 values of 0.9472 and 0.949. Three-dimensional excitation emission matrix (3D-EEM) analysis revealed that some activities of microbes were activated and enhanced by microaeration, which resulted in the disintegration of aggregates of large molecules, indicated by the size exclusion chromatography (SEC). After the introduction of microaeration, the emerging genera Aquamicrobium, Flaviflexus, Pseudomonas and Thiopseudomonas in the microbial community might be responsible for the effective biodegradation of the surfactants.
Collapse
Affiliation(s)
- Zhenmin Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiedong Lu
- Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuanmei Pei
- Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| |
Collapse
|
14
|
|
15
|
Zhao J, Wu J, Li X, Wang S, Hu B, Ding X. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures. Front Microbiol 2017; 8:9. [PMID: 28154554 PMCID: PMC5243800 DOI: 10.3389/fmicb.2017.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0–4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5–1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria, and the predominant class changed from Bacilli to Alpha, Beta, and Gamma Proteobacteria.
Collapse
Affiliation(s)
- Jianqiang Zhao
- School of Environmental Science and Engineering, Chang'an UniversityXi'an, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of EducationXi'an, China
| | - Jinna Wu
- School of Environmental Science and Engineering, Chang'an University Xi'an, China
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University Xi'an, China
| | - Sha Wang
- School of Environmental Science and Engineering, Chang'an University Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University Xi'an, China
| | - Xiaoqian Ding
- School of Environmental Science and Engineering, Chang'an University Xi'an, China
| |
Collapse
|
16
|
Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides. Biotechnol Lett 2017; 39:553-560. [PMID: 28058522 DOI: 10.1007/s10529-016-2276-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To identify and characterize a novel aryloxyphenoxypropionate (AOPP) herbicide-hydrolyzing carboxylesterase from Aquamicrobium sp. FPB-1. RESULTS A carboxylesterase gene, fpbH, was cloned from Aquamicrobium sp. FPB-1. The gene is 798 bp long and encodes a protein of 265 amino acids. FpbH is smaller than previously reported AOPP herbicide-hydrolyzing carboxylesterases and shares only 21-35% sequence identity with them. FpbH was expressed in Escherichia coli BL21(DE3) and the product was purified by Ni-NTA affinity chromatography. The purified FpbH hydrolyzed a wide range of AOPP herbicides with catalytic efficiency in the order: haloxyfop-P-methyl > diclofop-methyl > fenoxaprop-P-ethyl > quizalofop-P-ethyl > fluazifop-P-butyl > cyhalofop-butyl. The optimal temperature and pH for FpbH activity were 37 °C and 7, respectively. CONCLUSIONS FpbH is a novel AOPP herbicide-hydrolyzing carboxylesterase; it is a good candidate for mechanistic study of AOPP herbicide-hydrolyzing carboxylesterases and for bioremediation of AOPP herbicide-contaminated environments.
Collapse
|
17
|
Aquamicrobium soli sp. nov., a bacterium isolated from a chlorobenzoate-contaminated soil. Antonie van Leeuwenhoek 2016; 110:305-312. [PMID: 27858250 DOI: 10.1007/s10482-016-0800-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
An aerobic, Gram-stain negative, short rod-shaped, asporogenous, non-motile bacterium designated strain NK8T was isolated from a chlorobenzoate contaminated soil in China. Strain NK8T was observed to grow optimally at pH 7.0, 30 °C and in the absence of NaCl in LB medium. The G + C content of the total DNA of strain NK8T was found to be 65.5 mol%. The 16S rRNA gene sequence of strain NK8T showed high similarity to that of Aquamicrobium aerolatum Sa14T (97.3%), followed by Aquamicrobium lusatiense S1T (96.7%) and Mesorhizobium sangali SCAU7T (96.6%). The DNA-DNA relatedness between strain NK8T and A. aerolatum Sa14T was 35.5 ± 0.9%. The major fatty acids of strain NK8T were determined to be C19:0 cyclo ω8c (45.6%), C18:1 ω7c (33.4%) and C16:0 (8.4%). The respiratory quinone was found to be ubiquinone Q-10. The major polyamine was found to be spermidine. The polar lipid profile include the major compounds phosphatidylcholine and diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminolipid and phospholipid. Based on the differential biochemical and physiological characteristics, the geno-, chemo- and phenotypic characteristics, strain NK8T is proposed to represent a novel species of the genus Aquamicrobium, Aquamicrobium soli sp. nov. The type strain is NK8T (=KCTC 52165T=CCTCC AB2016045T).
Collapse
|
18
|
Navarro RR, Hori T, Inaba T, Matsuo K, Habe H, Ogata A. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning. WATER RESEARCH 2016; 94:166-175. [PMID: 26945453 DOI: 10.1016/j.watres.2016.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn affected their re-fouling potential.
Collapse
Affiliation(s)
- Ronald R Navarro
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kazuyuki Matsuo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
19
|
Wu ZG, Wang F, Gu CG, Zhang YP, Yang ZZ, Wu XW, Jiang X. Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory. Antonie van Leeuwenhoek 2014; 105:1131-7. [DOI: 10.1007/s10482-014-0174-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
|