1
|
Kim M, Oh ET, Kim SB. Description of Chryseobacterium fluminis sp. nov., a keratinolytic bacterium isolated from a freshwater river. Int J Syst Evol Microbiol 2024; 74. [PMID: 38305712 DOI: 10.1099/ijsem.0.006261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated MMS21-Ot14T, was isolated from a freshwater river, and shown to represent a novel species of the genus Chryseobacterium on the basis of the results from a polyphasic approach. The 16S rRNA gene sequence analysis revealed that MMS21-Ot14T represented a member of the genus Chryseobacterium of the family Weeksellaceae and was closely related to Chryseobacterium hagamense RHA2-9T (97.52 % sequence similarity), Chryseobacterium gwangjuense THG A18T (97.46 %) and Chryseobacterium gregarium P 461/12T (97.27 %). The optimal growth of MMS21-Ot14T occurred at 25-30 °C, pH 6.0-7.0 and in the absence of NaCl. MMS21-Ot14T was capable of hydrolysing casein, starch, DNA, Tween 20 and tyrosine. The strain also showed keratinolytic activity with keratin azure and decolourising activity with remazol brilliant blue R (RBBR), which indicated potential ability to degrade keratin and lignin. The main polar lipids of MMS21-Ot14T were phosphatidylethanolamine, unidentified aminophospholipids, unidentified aminolipids, an unidentified phospholipid and several unidentified lipids. The predominant fatty acids of MMS21-Ot14T were iso-C15 : 0 and iso-C17 : 0 3-OH, and the major isoprenoid quinone was menaquinone 6 (MK-6). The whole genome of MMS21-Ot14T was 5 062 016 bp in length with a DNA G+C content of 37.7 %. The average nucleotide identity and digital DNA-DNA hybridisation values between MMS21-Ot14T and phylogenetically related members of the genus Chryseobacterium were well below the threshold values for species delineation. It is evident from the results of this study that MMS21-Ot14T should be classified as representing a novel species of the genus Chryseobacterium, for which the name Chryseobacterium fluminis sp. nov. (type strain, MMS21-Ot14T = KCTC 92255T = LMG 32529T) is proposed.
Collapse
Affiliation(s)
- Moonsoo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Eun Tak Oh
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Chryseobacterium tagetis sp. nov., a plant growth promoting bacterium with an antimicrobial activity isolated from the roots of medicinal plant (Tagetes patula). J Antibiot (Tokyo) 2022; 75:312-320. [PMID: 35440770 DOI: 10.1038/s41429-022-00525-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
A novel plant growth-promoting and indole acetic acid (IAA) producing strain designated RG1T was isolated from the roots of Tagetes patula (marigold) collected from Goyang, South Korea. The cells of strain RG1T is aerobic, yellow, Gram-stain-negative, pleomorphic and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RG1T belongs to the genus Chryseobacterium and is closely related to Chryseobacterium gwangjuense THG-A18T (98.6%). The strain produced IAA (70.5 µg ml-1) in the presence of L-tryptophan and showed antimicrobial activity against Gram-negative bacterium Xanthomonas campestris pv. campestris KACC 10377T. The isolate had a significant positive effect on rice plant shoot and root growth. The novel strain RG1T had a draft genome size of 4,430,189 bp, with ten scaffolds and 3969 protein-coding genes. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain RG1T and other closely related members ranged from 21.5 to 36.6% and from 79.2 to 86.6%, respectively. The genomic DNA G + C content was 34.8 mol%. Furthermore, anti-SMASH analysis of the whole genome revealed six putative biosynthetic gene clusters responsible for various secondary metabolites. The major respiratory quinone was MK-6 and the major fatty acids were iso-C15:0, summed feature 3 (comprising C16: 1ω7c and/or C16: 1ω6c) and summed feature 9 (comprising iso-C17: 1 ω9c and/or 10-methyl C16:0). The major polar lipid is phosphatidylethanolamine. Based on the genotypic, chemotaxonomic and physiological data, strain RG1T represents a novel species, for which the name Chryseobacterium tagetis sp. nov. is proposed. The type strain is designated as RG1T ( = KCTC 82696T = NBRC 115057T).
Collapse
|
3
|
Lauterbach L, Dickschat JS. Volatiles from the Psychrotolerant Bacterium Chryseobacterium polytrichastri. Chembiochem 2020; 21:3608-3617. [PMID: 32789965 PMCID: PMC7756357 DOI: 10.1002/cbic.202000503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Indexed: 01/08/2023]
Abstract
The flavobacterium Chryseobacterium polytrichastri was investigated for its volatile profile by use of a closed-loop stripping apparatus (CLSA) and subsequent GC-MS analysis. The analyses revealed a rich headspace extract with 71 identified compounds. Compound identification was based on a comparison to library mass spectra for known compounds and on a synthesis of authentic standards for unknowns. Important classes were phenylethyl amides and a series of corresponding imines and pyrroles.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
4
|
Wen CF, Xi LX, Zhao S, Hao ZX, Luo L, Liao H, Chen ZR, She R, Han GQ, Cao SJ, Wu R, Yan QG, Hou R. Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China. J Zhejiang Univ Sci B 2017; 17:610-8. [PMID: 27487806 DOI: 10.1631/jzus.b1500214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Gram-negative, aerobic, non-motile, rod-shaped bacterial strain, designated 25-1(T), was isolated from the air inside giant panda enclosures at the Chengdu Research Base of Giant Panda Breeding, China. Strain 25-1(T) grew optimally at pH 7.0-8.0, at 28-30 °C and in the presence of NaCl concentrations from 0.0% to 0.5 %. 16S rRNA gene sequence analysis indicated that strain 25-1(T) belongs to the genus Chryseobacterium within the family Flavobacteriaceae and is related most closely to C. carnis G81(T) (96.4% similarity), C. lathyri RBA2-6(T) (95.8% similarity), and C. zeae JM1085(T) (95.8% similarity). Its genomic DNA G+C molar composition was 36.2%. The major cellular fatty acids were iso-C15:0 (44.0%), iso-C17:0 3OH (19.8%) and C16:1 ω7c/16:1 ω6c (12.7%). The only isoprenoid quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unidentified amino lipids and two unidentified lipids. The DNA-DNA relatedness between strain 25-1(T) and C. lathyri RBA2-6(T) was 38%. Phenotypic, genotypic, and phylogenetic characteristics indicated that strain 25-1(T) is a novel member of the genus Chryseobacterium, for which the name C. chengduensis sp. nov. is proposed. The type strain is 25-1(T) (CCTCC AB2015133(T)=DSM 100396(T)).
Collapse
Affiliation(s)
- Cai-Fang Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Xin Xi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhong-Xiang Hao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Liao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Rong Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong She
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guo-Quan Han
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| |
Collapse
|
5
|
Zhao Y, Wang Y, Li DH, Deng Y, Yang H. Chryseobacterium reticulitermitis sp. nov., isolated from the gut of Reticulitermes aculabialis. Int J Syst Evol Microbiol 2017; 67:1698-1702. [PMID: 28211309 DOI: 10.1099/ijsem.0.001848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, strain Ra1T, was isolated from the gut of a wood-feeding lower termite, Reticulitermes aculabialis. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain was closely related to Chryseobacterium rigui JCM 18078T (96.7 % similarity). Growth was observed at 15-45 °C (optimum 30 °C), at pH 6.0-9.0 (optimum pH 8.0) and in the presence of 0-2 % (w/v) NaCl (optimum 0 %). The DNA G+C content of strain Ra1T was 39.9 mol%. Cells contained menaquinone MK-6 as the sole respiratory quinone and the major fatty acids were iso-C15 : 0, iso-C17 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 9 (comprising C16 : 0 10-methyl and/or iso-C17 : 1ω9c). The predominant polyamine was sym-homospermidine. The cellular polar lipids consisted of one phosphatidylethanolamine, three unidentified aminolipids, one unidentified phospholipid and one unidentified lipid. Based on phenotypic, genotypic and phylogenetic studies, it is concluded that strain Ra1T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium reticulitermitis sp. nov. is proposed. The type strain is Ra1T (=CCTCC AB 2015431T=KCTC 52230T).
Collapse
Affiliation(s)
- Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Dan Hong Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yu Deng
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, PR China.,Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| |
Collapse
|
6
|
Guo W, Li J, Shi M, Yuan K, Li N, Wang G. Chryseobacterium montanum sp. nov. isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:4051-4056. [PMID: 27412503 DOI: 10.1099/ijsem.0.001309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated WG4T, was isolated from soil of the Tianmen Mountain located in Hunan province, PR China. 16S rRNA gene sequence analysis showed that the strain belongs to the genus Chryseobacterium in the family Flavobacteriaceae, with 97.4 % and 97.1 % sequence identities to Chryseobacterium anthropi NF 1366T and Chryseobacterium haifense H38T, respectively. In comparison with the other strains representing the genus Chryseobacterium, the 16S rRNA gene sequence identities were less than 97.0 %. The DNA-DNA relatedness values were 63.3 % (±1) between C. anthropi NF 1366T and strain WG4T and 62.7 % (±2) between C. haifense DSM 19056T and strain WG4T. The DNA G+C content of strain WG4T was 37.7 mol%. The predominant fatty acids of strain WG4T were iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, three unidentified lipids and two unidentified aminolipids. The major menaquinone of strain WG4T was menaquinone 6. Strain WG4T showed some unique physiological and biochemical characteristics, such as being negative for gelatin hydrolysis, and valine arylamidase and α-glucosidase activity, and positive for acid production from cellobiose. Based on the differentiating phylogenetic inference and biochemical data, strain WG4T represents a novel species, for which the name Chryseobacterium montanum sp. nov. is proposed, with the type strain WG4T (=KCTC 52204T=CCTCC AB 2016058T).
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Manman Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kai Yuan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nuohan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
7
|
Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Chryseobacterium arachidiradicis sp. nov., isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea). Int J Syst Evol Microbiol 2015; 65:2179-2186. [PMID: 25858249 DOI: 10.1099/ijs.0.000237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow-pigmented bacterial strain, 91A-612(T), isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea) in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Chryseobacterium, showing the highest sequence similarities to the type strains of Chryseobacterium molle (98.4%), C. pallidum (98.3%) and C. hominis (97.8%). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus Chryseobacterium were below 97.0%. The fatty acid profile of strain 91A-612(T) consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH/C16 : 1ω7c) and iso-C17 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained sym-homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA-DNA hybridizations between strain 91A-612(T) and the type strains of C. molle, C. pallidum and C. hominis resulted in relatedness values well below 70%. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612(T) represents a novel species of the genus Chryseobacterium, for which we propose the name Chryseobacterium arachidiradicis sp. nov. (type strain 91A-612(T) = LMG 27814(T)= CCM 8490(T) = CIP 110647(T)).
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, , A-1210 Wien, Austria
| | - John A McInroy
- Department of Entomology and Plant Pathology, , Auburn University, Auburn, AL, USA
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
8
|
Zhao R, Chen XY, Li XD, Chen ZL, Li YH. Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 2015; 65:71-76. [DOI: 10.1099/ijs.0.065888-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped and non-endospore-forming bacterium, designated strain AG1-2T, was isolated from Takakia lepidozioides collected from the Gawalong glacier in Tibet, China and characterized using a polyphasic taxonomic approach. The predominant fatty acids of strain AG1-2T were iso-C15 : 0 (36.0 %), iso-C17 : 0 3-OH (20.2 %), summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl, 16.4 %) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 11.1 %). The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and two unidentified lipids. Strain AG1-2T contained MK-6 as the dominant menaquinone, and the genomic DNA G+C content was 37.3 mol%. The phylogenetic analysis based on the 16S rRNA gene sequences showed that strain AG1-2T was affiliated to species of the genus
Chryseobacterium
, and its closest related species were
Chryseobacterium taiwanense
Soil-3-27T,
Chryseobacterium hispalense
AG13T,
Chryseobacterium camelliae
THG C4-1T and
Chryseobacterium taeanense
PHA3-4T with a sequence similarity of 98.0, 97.8, 97.3 and 97.1 %, respectively. However, the DNA–DNA relatedness values between these strains and strain AG1-2T were 29, 21, 21 and 45 %, respectively. Based on phylogenetic inference and phenotypic data, strain AG1-2T is considered to represent a novel species of the genus
Chryseobacterium
, for which the name Chryseobacterium
takakiae sp. nov. is proposed. The type strain is AG1-2T ( = CGMCC 1.12488T = DSM 26898T).
Collapse
Affiliation(s)
- Ran Zhao
- College of Life Science, Capital Normal University, Beijing 100048, PR China
| | - Xin Yao Chen
- College of Life Science, Capital Normal University, Beijing 100048, PR China
| | - Xue Dong Li
- College of Life Science, Capital Normal University, Beijing 100048, PR China
| | - Zhi Ling Chen
- College of Life Science, Capital Normal University, Beijing 100048, PR China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Beijing 100048, PR China
| |
Collapse
|
9
|
Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium. Antonie van Leeuwenhoek 2014; 107:403-10. [DOI: 10.1007/s10482-014-0338-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
|
10
|
Kämpfer P, Poppel MT, Wilharm G, Busse HJ, McInroy JA, Glaeser SP. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014; 64:1419-1427. [DOI: 10.1099/ijs.0.058933-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yellow-pigmented bacterial strains (100T and C26T), showing 98.4 % 16S rRNA gene sequence similarity to each other and isolated from a chicken in Germany and as a contaminant from an agar plate of a rhizosphere sample in Alabama, were studied by using a polyphasic taxonomic approach. Cells of both isolates were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequences of the two organisms with the sequences of the type strains of the most closely related species of the genus
Chryseobacterium
showed the highest sequence similarities of strains 100T and C26T to the type strains of
Chryseobacterium joostei
(respectively 97.5 and 98.2 %),
C. viscerum
(96.6, 97.8 %),
C. gleum
(97.1, 97.7 %),
C. arthrosphaerae
(97.3%, 97.7 %),
C. indologenes
(97.2, 97.7 %),
C. tructae
(96.6, 97.6 %),
C. jejuense
(97.0, 97.6 %) and
C. oncorhynchi
(96.3, 97.5 %); 16S rRNA gene sequence similarities to members of all other species of the genus
Chryseobacterium
were below 97.5 %. The fatty acid profiles of both strains consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 1ω9c and iso-C17 : 0 3-OH, but also showed slight differences (absence or presence of C16 : 0 3-OH and iso-C15 : 1 F). DNA–DNA hybridizations between the two strains and between the novel strains and the type strains of
C. joostei
,
C. indologenes
,
C. jejuense
,
C. tructae
and
C. viscerum
resulted in relatedness values clearly below 70 %. These DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed that both strains 100T and C26T represent novel species, for which the names Chryseobacterium gallinarum sp. nov. (type strain 100T = LMG 27808T = CCM 8493T) and Chryseobacterium contaminans sp. nov. (type strain C26T = LMG 27810T = CCM 8492T) are proposed.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Marie T. Poppel
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, Germany
| | | | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | | | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|