1
|
Wang L, Xu J, Li C, Hu X, Song C, Liu G, Chen C. Microbial adhesion behavior and participation of adhered and planktonic microorganisms in anaerobic digestion of leaf, epidermis, pith from corn stalk. BIORESOURCE TECHNOLOGY 2025; 426:132346. [PMID: 40044053 DOI: 10.1016/j.biortech.2025.132346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
This study presents deep insights into the microbial adhesion and community dynamics of adhered and planktonic microorganisms during the anaerobic digestion (AD) of leaf, epidermis, and pith of corn stalk (CS). Microbial adhesion regularity varied with the part of CS. Overall, hydrolytic bacteria (Ruminofilibacter xylanolyticum, uncultured Bacteroidetes bacteria RII-AN097, uncultured Prolixibacteriaceae bacteria, Proteiniphilum sp. S20) and fermentative bacteria (Enterobacter hormaechei, Mobilitalia sibirica, Sphaerochaeta associate, Marinatabiaceae bacteria Ai-910, uncultured Planctomycetes bacteria, Kosakonia cowanii) would adhere to the surface of feedstock to synergistically degrade CS according to the full-length 16S rDNA gene sequencing. Acidification (uncultured Sedimentibacteriaceae sp.) and methanogenesis microorganisms (Methanosarcina barkeri str. Fusaro, Methanosateta spp.) mainly played a role in the planktonic phase for acetic acid and methane production. This study enriches the understanding of the adhered and planktonic microbial community involved in the AD, and provides a novel perspective to scientifically regulate microorganisms improving methanogenesis efficiency.
Collapse
Affiliation(s)
- Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinxiao Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cheng Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Pipereau K, Trably E, Santa-Catalina G, García-Bernet D, Carrere H. Targeted pretreatment and inoculation strategies for horse manure fermentation: Impact on metabolites and microbial community composition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125894. [PMID: 40403669 DOI: 10.1016/j.jenvman.2025.125894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Horse manure is a lignocellulosic biomass found in significant quantities with a vast indigenous flora, not yet fully valorized apart from anaerobic digestion. Its use in the fermentation process can lead to the production of higher-value metabolites. This study investigates three inoculation strategies coupled with five pretreatment conditions for horse manure fermentation. Two microwave pretreatments (200W and 1000W) were compared with a conventional thermal pretreatment, a thermo-acid pretreatment, and an unpretreated condition. The sole horse manure indigenous microorganisms were used in fermentation and compared with two inoculation strategies using external inoculum, which was i) thermally treated or ii) pretreated simultaneously with manure. A statistically similar total metabolite production (0.088 ± 0.010 gCOD/gVS) was observed, with more than 50 % of acetate produced for all the pretreated conditions. When no pretreatment was performed (Ctrl), methane was produced as a major metabolite. The metabolic profile of the thermo-acid pretreatment condition using solely indigenous microorganisms was different from the other conditions, with ethanol (0.015 ± 0.004 gCOD/gVS) and hydrogen (0.009 ± 0.002 gCOD/gVS) production. This was related to the Klebsiella genus abundance increase recorded for this condition. Both microwave pretreatments shared similar metabolite results and microbial composition with the conventional thermal pretreatment. However, a heat shock is needed to inhibit methane production from archaea and can be performed by microwave or conventional thermal pretreatment. To conclude, indigenous horse manure microorganisms are suitable for fermentation with equivalent yields compared to an external inoculum from a wastewater treatment plant whatever the pretreatment applied. However, a heat shock is needed to inhibit methane production from archaea and can be performed via microwave or conventional thermal pretreatment.
Collapse
Affiliation(s)
- Korantin Pipereau
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100, Narbonne, France
| | - Eric Trably
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100, Narbonne, France
| | - Gaelle Santa-Catalina
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100, Narbonne, France
| | - Diana García-Bernet
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100, Narbonne, France
| | - Hélène Carrere
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100, Narbonne, France.
| |
Collapse
|
3
|
Zhang X, Zhao Y, Wang Y, Qian H, Xing J, Joseph A, Rene ER, Li J, Zhu N. The interplay of hematite and photic biofilm triggers the acceleration of biotic nitrate removal. CHEMOSPHERE 2024; 358:142136. [PMID: 38692363 DOI: 10.1016/j.chemosphere.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.
Collapse
Affiliation(s)
- Xiguo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanhui Zhao
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, 430010, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haoliang Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, 210008, China.
| |
Collapse
|
4
|
Hivarkar SS, Vasudevan G, Dhakephalkar PK, Dagar SS. Description of Sporanaerobium hydrogeniformans gen. nov., sp. nov., an obligately anaerobic, hydrogen-producing bacterium isolated from Aravali hot spring in India. Arch Microbiol 2023; 205:305. [PMID: 37572166 DOI: 10.1007/s00203-023-03641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
An obligately anaerobic bacterium XHS1971T, capable of degrading cellulose and xylan, was isolated from a sediment sample of Aravali hot spring, Ratnagiri, India. Cells of strain XHS1971T were Gram-stain-negative, spore-forming, motile, long-rods. Growth was observed at temperatures 30-50 °C (optimum 40-45 °C), pH 5.0-10.0 (optimum pH 8.0) and NaCl concentrations 0-0.5% (optimum 0%). Generation time of strain XHS1971T was 5 h under optimised growth conditions. Strain XHS1971T showed the ability to metabolise different complex and simple sugars constituting lignocellulosic biomass. Glucose was fermented majorly into hydrogen, formic acid, acetic acid, and ethanol, whereas carbon dioxide, butyric acid, lactic acid and succinic acid were produced in traces. 16S rRNA gene analysis of strain XHS1971T revealed < 94.5% homology with Cellulosilyticum lentocellum DSM5427T followed by Cellulosilyticum ruminicola JCM14822T, identifying strain as a distinct member of family Lachnospiraceae. The major cellular fatty acids (> 5%) were C14:0, C16:0, C18:0, and C16:1 ω7c. The genome size of the strain was 3.74 Mb with 35.3 mol% G + C content, and genes were annotated to carbohydrate metabolism, including genes involved in the degradation of cellulose and xylan and the production of hydrogen, ethanol and acetate. The uniqueness of strain was further validated by digital DNA-DNA hybridisation (dDDH), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) values of 22%, 80%, and 63%, respectively, with nearest phylogenetic affiliates. Based on the detailed analyses, we propose a new genus and species, Sporanaerobium hydrogeniformans gen. nov., sp. nov., for strain XHS1971T (= MCC3498T = KCTC15729T = JCM32657T) within family Lachnospiraceae.
Collapse
Affiliation(s)
- Sai Suresh Hivarkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gowdaman Vasudevan
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| |
Collapse
|
5
|
Hu L, Zhang D, Qian Y, Nie Z, Long Y, Shen D, Fang C, Yao J. Microbes drive changes in arsenic species distribution during the landfill process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118322. [PMID: 34634411 DOI: 10.1016/j.envpol.2021.118322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Landfills are considered an anthropogenic source of arsenic (As). The As species mediated by microbes in landfills vary significantly in toxicity. Based on random matrix theory, 16S rRNA genes were used to construct four microbial networks associated with different stages over 12 years of landfill ages. The results indicated that network size and microbial structure varied with landfill age. According to the network scores, about 208 taxa were identified as putative keystones for the whole landfill; the majority of them were Firmicutes, which accounted for 66.8% of all specialists. Random Forest analysis was performed to predict the keystone taxa most responsible for As species distribution under different landfill conditions; 17, 10 and 14 keystone taxa were identified as drivers affecting As species distribution at early, middle, and later landfill stages, respectively.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Zhiyuan Nie
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jun Yao
- College of Life Science, Taizhou University, Jiaojiang, 318000, China
| |
Collapse
|
6
|
Rettenmaier R, Thieme N, Streubel J, Di Bello L, Kowollik ML, Huang L, Maus I, Klingl A, Liebl W, Zverlov VV. Variimorphobacter saccharofermentans gen. nov., sp. nov., a new member of the family Lachnospiraceae, isolated from a maize-fed biogas fermenter. Int J Syst Evol Microbiol 2021; 71. [PMID: 34731077 DOI: 10.1099/ijsem.0.005044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7-8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae, for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.
Collapse
Affiliation(s)
- Regina Rettenmaier
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Nils Thieme
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Johanna Streubel
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Luca Di Bello
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Marie-Louise Kowollik
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Andreas Klingl
- Ludwig-Maximilians-Universität Munich, Plant Development & Electron Microscopy, Biocenter LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V Zverlov
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany.,Institute of Molecular Genetics, National Research Centre 'Kurchatov Institute', Kurchatov Sq 2, 123182 Moscow, Russia
| |
Collapse
|
7
|
Pan Y, Zheng X, Xiang Y. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing. BIORESOURCE TECHNOLOGY 2021; 340:125709. [PMID: 34375790 DOI: 10.1016/j.biortech.2021.125709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The characterized microbial consortium can efficiently degrade rice straw to produce acetic and butyric acids in high yields. The rice straw lost 86.9% in weight and degradation rates of hemicellulose, cellulose, and lignin attained were 97.1%, 86.4% and 70.3% within 12 days, respectively. During biodegradation via fermentation of rice straw, average concentrations of acetic and butyric acids reached 1570 mg/L and 1270 mg/L, accounting for 47.2% and 35.4% of the total volatile fatty acids, respectively. The consortium mainly composed of Prevotella, Cellulosilyticum, Pseudomonas, Clostridium and Ruminococcaceae, etc. Metagenomic analyses indicated that glycoside hydrolases (GHs) were the largest enzyme group with a relative abundance of 54.5%. Various lignocellulose degrading enzymes were identified in the top 30 abundant GHs, and were primarily distributed in the dominant genera (Prevotella, Cellulosilyticum and Clostridium). These results provide a new route for the commercial recycling of rice straw to produce organic acids.
Collapse
Affiliation(s)
- Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Xuntao Zheng
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yang Xiang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Chapleur O, Poirier S, Guenne A, Lê Cao KA. Time-course analysis of metabolomic and microbial responses in anaerobic digesters exposed to ammonia. CHEMOSPHERE 2021; 283:131309. [PMID: 34467946 DOI: 10.1016/j.chemosphere.2021.131309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Omics longitudinal studies are effective experimental designs to inform on the stability and dynamics of microbial communities in response to perturbations, but time-course analytical frameworks are required to fully exploit the temporal information acquired in this context. In this study we investigate the influence of ammonia on the stability of anaerobic digestion (AD) microbiome with a new statistical framework. Ammonia can severely reduce AD performance. Understanding how it affects microbial communities development and the degradation progress is a key operational issue to propose more stable processes. Thirty batch digesters were set-up with different levels of ammonia. Microbial community structure and metabolomic profiles were monitored with 16 S-metabarcoding and GCMS (gas-chromatography-mass-spectrometry). Digesters were first grouped according to similar degradation performances. Within each group, time profiles of OTUs and metabolites were modelled, then clustered into similar time trajectories, evidencing for example a syntrophic interaction between Syntrophomonas and Methanoculleus that was maintained up to 387 mg FAN/L. Metabolites resulting from organic matter fermentation, such as dehydroabietic or phytanic acid, decreased with increasing ammonia levels. Our analytical framework enabled to fully account for time variability and integrate this parameter in data analysis.
Collapse
Affiliation(s)
- Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Simon Poirier
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and the School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Nie Z, Hu L, Zhang D, Qian Y, Long Y, Shen D, Fang C, Yao J, Liu J. Drivers and ecological consequences of arsenite detoxification in aged semi-aerobic landfill. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126597. [PMID: 34252667 DOI: 10.1016/j.jhazmat.2021.126597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Microbial populations responsible for arsenite [As(III)] detoxification were examined in aged refuse treated with 75 μM As(III) under semi-aerobic conditions. As(III) was rapidly oxidized to As(V) via microbial activity, and substantial As was fixed in the solid phase. The abundance of arsenite oxidase genes (aioA) was about four times higher in the moderate As(III) stressed treatment than in the untreated control. Network analysis of microbial community 16S rRNA genes based on MRT (random matrix theory) further illuminated details about microbe-microbe interactions, and showed six ecological clusters. A total of 166 "core" taxa were identified by within-module connectivity and among-module connectivity values. When compared with the control treatment without As(III), 12 putative keystone operational taxonomic units were positively correlated with As(III) oxidation, of which 10 of these were annotated to genera level. Eight genera were associated with As(III) detoxification: Pseudomonas, Paenalcaligenes, Proteiniphilum, Moheibacter, Mobilitalea, Anaerosporobacter, Syntrophomonas and Pusillimonas. Most of those putative keystone taxa were rare species in landfill, which suggests that low-abundance taxa might significantly contribute to As(III) oxidation.
Collapse
Affiliation(s)
- Zhiyuan Nie
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Yao
- College of Life Science, Taizhou University, Jiaojiang 318000, China
| | - Jinbao Liu
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
| |
Collapse
|
10
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Anaerocolumna chitinilytica sp. nov., a chitin-decomposing anaerobic bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2021; 71. [PMID: 34515629 DOI: 10.1099/ijsem.0.004999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2-97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
11
|
Draft Genome Sequence of Mobilitalea sibirica Strain P3M-3 T, the Sole Representative of the Genus Mobilitalea. Microbiol Resour Announc 2021; 10:10/13/e00129-21. [PMID: 33795340 PMCID: PMC8104048 DOI: 10.1128/mra.00129-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated by from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing. Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing.
Collapse
|
12
|
Poret-Peterson AT, Sayed N, Glyzewski N, Forbes H, González-Orta ET, Kluepfel DA. Temporal Responses of Microbial Communities to Anaerobic Soil Disinfestation. MICROBIAL ECOLOGY 2020; 80:191-201. [PMID: 31873773 PMCID: PMC7338823 DOI: 10.1007/s00248-019-01477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic soil disinfestation (ASD) is an organic amendment-based management tool for controlling soil-borne plant diseases and is increasingly used in a variety of crops. ASD results in a marked decrease in soil redox potential and other physicochemical changes, and a turnover in the composition of the soil microbiome. Mechanisms of ASD-mediated pathogen control are not fully understood, but appear to depend on the carbon source used to initiate the process and involve a combination of biological (i.e., release of volatile organic compounds) and abiotic (i.e., lowered pH, release of metal ions) factors. In this study, we examined how the soil microbiome changes over time in response to ASD initiated with rice bran, tomato pomace, or red grape pomace as amendments using growth chamber mesocosms that replicate ASD-induced field soil redox conditions. Within 2 days, the soil microbiome rapidly shifted from a diverse assemblage of taxa to being dominated by members of the Firmicutes for all ASD treatments, whereas control mesocosms maintained diverse and more evenly distributed communities. Rice bran and tomato pomace amendments resulted in microbial communities with similar compositions and trajectories that were different from red grape pomace communities. Quantitative PCR showed nitrogenase gene abundances were higher in ASD communities and tended to increase over time, suggesting the potential for altering soil nitrogen availability. These results highlight the need for temporal and functional studies to understand how pathogen suppressive microbial communities assemble and function in ASD-treated soils.
Collapse
Affiliation(s)
| | - Nada Sayed
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathaniel Glyzewski
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
- Green Leaf Lab, Sacramento, CA, USA
| | - Holly Forbes
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
| | - Enid T González-Orta
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Daniel A Kluepfel
- USDA-ARS Crops Pathology and Genetics Research Unit, University of California, Davis, USA
| |
Collapse
|
13
|
Impact of Fe and Ni Addition on the VFAs' Generation and Process Stability of Anaerobic Fermentation Containing Cd. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214066. [PMID: 31652708 PMCID: PMC6862441 DOI: 10.3390/ijerph16214066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/27/2022]
Abstract
The effects of Cd, Cd + Fe, and Cd + Ni on the thermophilic anaerobic fermentation of corn stover and cow manure were studied in pilot experiments by investigating the biogas properties, process stability, substrate biodegradation, and microbial properties. The results showed that the addition of Fe and Ni into the Cd-containing fermentation system induced higher cumulative biogas yields and NH4+–N concentrations compared with the only Cd-added group. Ni together with Cd improved and brought forward the peak daily biogas yields, and increased the CH4 contents to 80.76%. Taking the whole fermentation process into consideration, the promoting impact of the Cd + Ni group was mainly attributed to better process stability, a higher average NH4+–N concentration, and increased utilization of acetate. Adding Fe into the Cd-containing fermentation system increased the absolute abundance of Methanobrevibacter on the 13th day, and Methanobrevibacter and Methanobacterium were found to be positively correlated with the daily biogas yield. This research was expected to provide a basis for the reuse of biological wastes contaminated by heavy metals and a reference for further studies on the influence of compound heavy metals on anaerobic fermentation.
Collapse
|
14
|
Podosokorskaya OA, Teplyuk AV, Zayulina KS, Kopitsyn DS, Dominova IN, Elcheninov AG, Toshchakov SV, Kublanov IV. The Metabolism of Thermophilic Hydrolytic Bacterium Thauera hydrothermalis Strain par-f-2 Isolated from the West Siberian Subsurface Biosphere. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Kim W, Yang SH, Park MJ, Oh J, Lee JH, Kwon KK. Anaerosacchariphilus polymeriproducens gen. nov., sp. nov., an anaerobic bacterium isolated from a salt field. Int J Syst Evol Microbiol 2019; 69:1934-1940. [PMID: 31038448 DOI: 10.1099/ijsem.0.003404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative oval-rod-shaped, spore-forming anaerobic bacterium, designated as strain MCWD5T, was isolated from sediment of a salt pond in the Republic of Korea (35° 7' 18″ N 126° 19' 4″ E). The 16S rRNA gene sequence analysis revealed that strain MCWD5T had low similarity values to members in the family Lachnospiraceae, such as Robinsoniella peoriensis PPC31T (94.8 %), Ruminococcusgauvreauii CCRI-16110T (94.2 %) and Lachnotalea glycerini DLD10T (94.0 %), and its phylogenetic position is unstable. The strain could grow at 20-42 °C (optimum, 38-42 °C), pH 5.5-10.0 (pH 7.0) and with 0-6 % (2.0 %) NaCl. Strain MCWD5T could not use nitrate, nitrite, sulfate or sulfite as electron acceptors. The strain could utilize various carbohydrates, such as arabinose, cellobiose, glucose, etc., and polymers such as pectin and starch. The major fatty acids of strain MCWD5T were C14 : 0, C16 : 0, C16 : 1ω7c, C18 : 1ω7c DMA and summed feature 8 (C17 : 1ω8c and/or C17 : 2), which was clearly different from those of related genera. The major polar lipids were diphosphatidyglycerol, phosphatidyglycerol and an unknown phospholipid. Based on the results of phylogenetic, physiologic and chemotaxonomic studies, Anaerosacchariphilus polymeriproducens gen. nov., sp. nov. with the type strain MCWD5T (=KCTC 15595T=DSM 105757T) is proposed in the family Lachnospiraceae.
Collapse
Affiliation(s)
- Wonduck Kim
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,†Present address: Genome and Company, Innovalley A-801, Pangyo-ro 253, Seongnam, Republic of Korea
| | - Sung-Hyun Yang
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Mi-Jeong Park
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,2KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihye Oh
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Jung-Hyun Lee
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Kae Kyoung Kwon
- 1Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.,2KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Korzhenkov AA, Teplyuk AV, Lebedinsky AV, Khvashchevskaya AA, Kopylova YG, Arakchaa KD, Golyshin PN, Lunev EA, Golyshina OV, Kublanov IV, Toshchakov SV, Gavrilov SN. Members of the Uncultured Taxon OP1 (“Acetothermia”) Predominate in the Microbial Community of an Alkaline Hot Spring at East-Tuvinian Upland. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. ENERGIES 2018. [DOI: 10.3390/en11123270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With growing demand for clean and cheap energy resources, biogas production is emerging as an ideal solution, as it provides relatively cheap and clean energy, while also tackling the problematic production of excessive organic waste from crops and animal agriculture. Behind this process stands a variety of anaerobic microorganisms, which turn organic substrates into valuable biogas. The biogas itself is a mixture of gases, produced mostly as metabolic byproducts of the microorganisms, such as methane, hydrogen, or carbon dioxide. Hydrogen itself figures as a potent bio-fuel, however in many bioreactors it serves as the main substrate of methanogenesis, thus potentially limiting biogas yield. With help of modern sequencing techniques, we tried to evaluate the composition in eight bioreactors using different input materials, showing shifts in the microbial consortia depending on the substrate itself. In this paper, we provide insight on the occurrence of potentially harmful microorganisms such as Clostridium novyi and Clostridium septicum, as well as key genera in hydrogen production, such as Clostridium stercorarium, Mobilitalea sp., Herbinix sp., Herbivorax sp., and Acetivibrio sp.
Collapse
|
18
|
Liu Q, Kämpf H, Bussert R, Krauze P, Horn F, Nickschick T, Plessen B, Wagner D, Alawi M. Influence of CO 2 Degassing on the Microbial Community in a Dry Mofette Field in Hartoušov, Czech Republic (Western Eger Rift). Front Microbiol 2018; 9:2787. [PMID: 30524401 PMCID: PMC6258768 DOI: 10.3389/fmicb.2018.02787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartoušov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km2 and a soil gas concentration of up to 100% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7% of the variance at the mofette site and 22.4% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites.
Collapse
Affiliation(s)
- Qi Liu
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Horst Kämpf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Potsdam, Germany
| | - Robert Bussert
- Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | - Patryk Krauze
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Tobias Nickschick
- Institute for Geophysics and Geology, University of Leipzig, Leipzig, Germany
| | - Birgit Plessen
- GFZ German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany.,Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
19
|
Grouzdev DS, Tourova TP, Babich TL, Shevchenko MA, Sokolova DS, Abdullin RR, Poltaraus AB, Toshchakov SV, Nazina TN. Whole-genome sequence data and analysis of type strains ' Pusillimonas nitritireducens' and ' Pusillimonas subterraneus' isolated from nitrate- and radionuclide-contaminated groundwater in Russia. Data Brief 2018; 21:882-887. [PMID: 30426040 PMCID: PMC6222257 DOI: 10.1016/j.dib.2018.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/01/2022] Open
Abstract
Two strains, 'Pusillimonas nitritireducens' JR1/69-2-13T and 'Pusillimonas subterraneus' JR1/69-3-13T, of aerobic, motile, Gram-negative, non-spore-forming, organotrophic, psychrotolerant bacteria were isolated from a sample of nitrate- and radionuclide-contaminated groundwater in Russia. Here we describe the draft genomes of these strains. The sequenced and annotated genome of the strain JR1/69-2-13T contained 4.3 Mbp with 4108 protein-coding genes. The genome of the strain JR1/69-3-13T contained 4.5 Mbp with 4260 protein-coding genes. Genome analysis of both strains provides an insight into the genomic basis of their resistance to nitrate, heavy metals and metalloids. The draft genome sequences of strains 'Pusillimonas nitritireducens' JR1/69-2-13T and 'Pusillimonas subterraneus' JR1/69-3-13T are available at DDBJ/EMBL/GenBank under the accession nos. https://www.ncbi.nlm.nih.gov/nuccore/PDNV00000000 and https://www.ncbi.nlm.nih.gov/nuccore/PDNW00000000, respectively.
Collapse
Affiliation(s)
- Denis S Grouzdev
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiyana P Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tamara L Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Diyana S Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ruslan R Abdullin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey B Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Tamara N Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation.,V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, Moscow, Russian Federation
| |
Collapse
|
20
|
An Q, Wang JL, Wang YT, Lin ZL, Zhu MJ. Investigation on hydrogen production from paper sludge without inoculation and its enhancement by Clostridium thermocellum. BIORESOURCE TECHNOLOGY 2018; 263:120-127. [PMID: 29738974 DOI: 10.1016/j.biortech.2018.04.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The feasibility and performance of hydrogen production from paper sludge without inoculation was investigated under thermophilic conditions. The maximum hydrogen production reached 64.32 mM with 7.4% PS. The dynamic changes in bacterial community structures during hydrogen production were investigated by analyzing 16S rDNA gene sequences using high throughput sequencing technology. The results showed that microbial community was dominated by order Clostridiales and Thermoanaerobacterales. Genus Thermoanaerobacterium and Ruminiclostridium played a leading role in the fermentation process, which was responsible for the hydrolysis of PS and hydrogen production. Effect of inoculation with Clostridium thermocellum on hydrogen production from PS was also studied. The results showed that C. thermocellum supplement significantly increased hydrogen yield and holocellulose degradation rate by 96.80% and 32.95%, respectively. In addition, inoculation of C. thermocellum enhanced VFA generation and shortened the lag phase of hydrogen production. The present study lays the foundation on the valorization of waste lignocellulose.
Collapse
Affiliation(s)
- Qian An
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Ji-Lian Wang
- College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China
| | - Zhang-Lin Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Ming-Jun Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashgar University, Kashgar 844000, People's Republic of China; The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashgar University, Kashgar 844000, People's Republic of China.
| |
Collapse
|
21
|
Zheng G, Wang T, Niu M, Chen X, Liu C, Wang Y, Chen T. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:783-791. [PMID: 29626822 DOI: 10.1016/j.envpol.2018.03.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r = 0.63, p < 0.05). Under aeration, Bacillus remained the dominant bacteria, especially in the thermal phase; this phenomenon possibly increased the biodegradation efficiency of NP. High-volume aeration accelerated the activity and prolonged the survival of Bacillus. The risk of organic pollution could be decreased prior to sewage sludge reuse in soil by adjusting the ventilation strategies of aerobic compost measurements.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tieyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Niu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changli Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Draft Genome Sequence of Roseomonas aestuarii Strain JR1/69-1-13 Isolated from Nitrate- and Radionuclide-Contaminated Groundwater in Russia. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00583-18. [PMID: 29930073 PMCID: PMC6013620 DOI: 10.1128/genomea.00583-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The draft genome sequence of Roseomonas aestuarii strain JR1/69-1-13, an aerobic chemoorganotrophic bacterium isolated from nitrate- and radionuclide-contaminated groundwater in Russia, is presented here. The genome was annotated to elucidate the genomic basis for the strain’s adaptation to the environment and its resistance to nitrate, heavy metals, and metalloids.
Collapse
|
23
|
Draft Genome Sequence of a Dissimilatory U(VI)-Reducing Bacterium, Shewanella xiamenensis Strain DCB2-1, Isolated from Nitrate- and Radionuclide-Contaminated Groundwater in Russia. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00555-18. [PMID: 29930062 PMCID: PMC6013632 DOI: 10.1128/genomea.00555-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we describe the draft genome sequence of Shewanella xiamenensis strain DCB2-1, isolated from nitrate- and radionuclide-contaminated groundwater. This strain is able to reduce nitrate, Tc(VII), Cr(VI), Fe(III), and U(VI), and its genome sequence contains several gene sets encoding denitrification, resistance to heavy metals, and reduction of metals and metalloids.
Collapse
|
24
|
Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani RK, Gadhamshetty V. Extremophiles for microbial-electrochemistry applications: A critical review. BIORESOURCE TECHNOLOGY 2018; 255:318-330. [PMID: 29433771 DOI: 10.1016/j.biortech.2018.01.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Bhuvan Vemuri
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Navanietha Rathinam
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Rajesh K Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States; Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States.
| |
Collapse
|
25
|
Tsavkelova E, Prokudina L, Egorova M, Leontieva M, Malakhova D, Netrusov A. The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Kusada H, Kameyama K, Meng XY, Kamagata Y, Tamaki H. Fusimonas intestini gen. nov., sp. nov., a novel intestinal bacterium of the family Lachnospiraceae associated with diabetes in mice. Sci Rep 2017; 7:18087. [PMID: 29273795 PMCID: PMC5741734 DOI: 10.1038/s41598-017-18122-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous study shows that an anaerobic intestinal bacterium strain AJ110941P contributes to type 2 diabetes development in mice. Here we phylogenetically and physiologically characterized this unique mouse gut bacterium. The 16S rRNA gene analysis revealed that the strain belongs to the family Lachnospiraceae but shows low sequence similarities ( < 92.5%) to valid species, and rather formed a distinct cluster with uncultured mouse gut bacteria clones. In metagenomic database survey, the 16S sequence of AJ110941P also matched with mouse gut-derived datasets (56% of total datasets) with > 99% similarity, suggesting that AJ110941P-related bacteria mainly reside in mouse digestive tracts. Strain AJ110941P shared common physiological traits (e.g., Gram-positive, anaerobic, mesophilic, and fermentative growth with carbohydrates) with relative species of the Lachnospiraceae. Notably, the biofilm-forming capacity was found in both AJ110941P and relative species. However, AJ110941P possessed far more strong ability to produce biofilm than relative species and formed unique structure of extracellular polymeric substances. Furthermore, AJ110941P cells are markedly long fusiform-shaped rods (9.0–62.5 µm) with multiple flagella that have never been observed in any other Lachnospiraceae members. Based on the phenotypic and phylogenetic features, we propose a new genus and species, Fusimonas intestini gen. nov., sp. nov. for strain AJ110941P (FERM BP-11443).
Collapse
Affiliation(s)
- Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Keishi Kameyama
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
27
|
He Q, Li L, Zhao X, Qu L, Wu D, Peng X. Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and microbial analysis. Sci Rep 2017; 7:13701. [PMID: 29057910 PMCID: PMC5651842 DOI: 10.1038/s41598-017-14258-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Foaming negatively affects anaerobic digestion of food waste (FW). To identify the causes of foaming, reactor performance and microbial community dynamics were investigated in three mesophilic digesters treating FW. The digesters were operated under different modes, and foaming was induced with several methods. Proliferation of specific bacteria and accumulation of surface active materials may be the main causes of foaming. Volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) accumulated in these reactors before foaming, which may have contributed to foam formation by decreasing the surface tension of sludge and increasing foam stability. The relative abundance of acid-producing bacteria (Petrimonas, Fastidiosipila, etc.) and ammonia producers (Proteiniphilum, Gelria, Aminobacterium, etc.) significantly increased after foaming, which explained the rapid accumulation of VFAs and NH4+ after foaming. In addition, the proportions of microbial genera known to contribute to foam formation and stabilization significantly increased in foaming samples, including bacteria containing mycolic acid in cell walls (Actinomyces, Corynebacterium, etc.) and those capable of producing biosurfactants (Corynebacterium, Lactobacillus, 060F05-B-SD-P93, etc.). These findings improve the understanding of foaming mechanisms in FW digesters and provide a theoretical basis for further research on effective suppression and early warning of foaming.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xiaofei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Li Qu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
28
|
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A. Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:264. [PMID: 29158776 PMCID: PMC5684752 DOI: 10.1186/s13068-017-0947-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/01/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND To elucidate biogas microbial communities and processes, the application of high-throughput DNA analysis approaches is becoming increasingly important. Unfortunately, generated data can only partialy be interpreted rudimentary since databases lack reference sequences. RESULTS Novel cellulolytic, hydrolytic, and acidogenic/acetogenic Bacteria as well as methanogenic Archaea originating from different anaerobic digestion communities were analyzed on the genomic level to assess their role in biomass decomposition and biogas production. Some of the analyzed bacterial strains were recently described as new species and even genera, namely Herbinix hemicellulosilytica T3/55T, Herbinix luporum SD1DT, Clostridium bornimense M2/40T, Proteiniphilum saccharofermentans M3/6T, Fermentimonas caenicola ING2-E5BT, and Petrimonas mucosa ING2-E5AT. High-throughput genome sequencing of 22 anaerobic digestion isolates enabled functional genome interpretation, metabolic reconstruction, and prediction of microbial traits regarding their abilities to utilize complex bio-polymers and to perform specific fermentation pathways. To determine the prevalence of the isolates included in this study in different biogas systems, corresponding metagenome fragment mappings were done. Methanoculleus bourgensis was found to be abundant in three mesophilic biogas plants studied and slightly less abundant in a thermophilic biogas plant, whereas Defluviitoga tunisiensis was only prominent in the thermophilic system. Moreover, several of the analyzed species were clearly detectable in the mesophilic biogas plants, but appeared to be only moderately abundant. Among the species for which genome sequence information was publicly available prior to this study, only the species Amphibacillus xylanus, Clostridium clariflavum, and Lactobacillus acidophilus are of importance for the biogas microbiomes analyzed, but did not reach the level of abundance as determined for M. bourgensis and D. tunisiensis. CONCLUSIONS Isolation of key anaerobic digestion microorganisms and their functional interpretation was achieved by application of elaborated cultivation techniques and subsequent genome analyses. New isolates and their genome information extend the repository covering anaerobic digestion community members.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunscheig, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Yvonne Stolze
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Sarah Hahnke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Katharina G. Cibis
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Daniela E. Koeck
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Yong S. Kim
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Jana Kreubel
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Aaron Weimann
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Sandra Off
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Robbin Stantscheff
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
- Institut für Forensische Genetik GmbH, Im Derdel 8, 48168 Münster, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Helmut König
- Johannes Gutenberg-University, Institute of Microbiology and Wine Research, Johann-Joachim Becherweg 15, 55128 Mainz, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Paul Scherer
- Faculty Life Sciences/Research Center ‘Biomass Utilization Hamburg’, University of Applied Sciences Hamburg (HAW), Ulmenliet 20, 21033 Hamburg-Bergedorf, Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
- Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Frank YA, Kadnikov VV, Gavrilov SN, Banks D, Gerasimchuk AL, Podosokorskaya OA, Merkel AY, Chernyh NA, Mardanov AV, Ravin NV, Karnachuk OV, Bonch-Osmolovskaya EA. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study. Front Microbiol 2016; 7:2101. [PMID: 28082967 PMCID: PMC5187383 DOI: 10.3389/fmicb.2016.02101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50°C. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within 5 years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles.
Collapse
Affiliation(s)
- Yulia A. Frank
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Vitaly V. Kadnikov
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Sergey N. Gavrilov
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - David Banks
- Glasgow and Holymoor Consultancy Ltd., Glasgow UniversityChesterfield, UK
| | - Anna L. Gerasimchuk
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Olga A. Podosokorskaya
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Alexander Y. Merkel
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Nikolai A. Chernyh
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Andrey V. Mardanov
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Nikolai V. Ravin
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Olga V. Karnachuk
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| |
Collapse
|
30
|
Koeck DE, Hahnke S, Zverlov VV. Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2016; 66:4132-4137. [DOI: 10.1099/ijsem.0.001324] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Daniela E. Koeck
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Sarah Hahnke
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB), D-14469 Potsdam, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
31
|
Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016; 66:2936-2943. [DOI: 10.1099/ijsem.0.001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Yoshimi Ohtaki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
32
|
Mbengue M, Thioye A, Labat M, Casalot L, Joseph M, Samb A, Ben Ali Gam Z. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake. Int J Syst Evol Microbiol 2016; 66:1383-1388. [PMID: 26755447 DOI: 10.1099/ijsem.0.000889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain positive, endospore-forming, strictly anaerobic bacterium, designated strain Gal1T, was isolated from shea cake, a waste material from the production of shea butter, originating from Saraya, Senegal. The cells were rod-shaped, slightly curved, and motile with peritrichous flagella. The strain was oxidase-negative and catalase-negative. Growth was observed at temperatures ranging from 15 to 45 °C (optimum 30 °C) and at pH 6.5-9.3 (optimum pH 7.8). The salinity range for growth was 0-3.5 % NaCl (optimum 1 %). Yeast extract was required for growth. Strain Gal1T fermented various carbohydrates such as mannose, mannitol, arabinose, cellobiose, fructose, glucose, maltose, sucrose, trehalose and lactose and the major end-products were ethanol and acetate. The only major cellular fatty acid was C16 : 0 (19.6 %). The DNA base G+C content of strain Gal1T was 33.8 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that this strain was related to Mobilitalea sibirica DSM 26468T with 94.27 % similarity, Clostridium populeti ATTC 35295T with 93.94 % similarity, and Clostridium aminovalericum DSM 1283T and Anaerosporobacter mobilis DSM 15930T with 93.63 % similarity. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, strain Gal1T was clearly distinguished from closely related genera, and strain Gal1T can be assigned to a novel species of a new genus for which the name Mobilisporobacter senegalensis gen. nov., sp. nov. is proposed. The type strain is Gal1T ( = DSM 26537T = JCM 18753T).
Collapse
Affiliation(s)
- Malick Mbengue
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France.,Laboratoire de Microbiologie Appliquée et de Génie Industriel, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop,BP 5005 Dakar-Fann, Dakar,Senegal
| | - Abdoulaye Thioye
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France.,Laboratoire de Microbiologie Appliquée et de Génie Industriel, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop,BP 5005 Dakar-Fann, Dakar,Senegal
| | - Marc Labat
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France
| | - Laurence Casalot
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France
| | - Manon Joseph
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France
| | - Abdoulaye Samb
- Laboratoire de Biochimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop,BP 5005 Dakar-Fann, Dakar,Senegal
| | - Zouhaier Ben Ali Gam
- Aix-Marseille Université, Université de Toulon,CNRS/INSU, IRD, UMR 235, MIO, UM110, 163 Avenue de Luminy, Case 925, F-13288, Marseille, Cedex 09,France
| |
Collapse
|
33
|
Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2015; 65:2365-2371. [DOI: 10.1099/ijs.0.000264] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypic and phylogenetic studies were performed on new isolates of a novel Gram-stain-positive, anaerobic, non-sporulating, rod-shaped bacterium isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene comparative sequence analysis demonstrated that the isolates formed a hitherto unknown subline within the family Lachnospiraceae. As a representative of the whole group of isolates, strain T3/55T was further characterized. The closest relative of T3/55T among the taxa with validly published names is Mobilitalea sibirica, sharing 93.9 % 16S rRNA gene sequence similarity. Strain T3/55T was catalase-negative, indole-negative, and produced acetate, ethanol and propionic acid as major end products from cellulose metabolism. The major cellular fatty acids (>1 %) were 16 : 0 dimethyl acetal, 16 : 0 fatty acid methyl ester and 16 : 0 aldehyde. The DNA G+C content was 36.6 mol%. A novel genus and species, Herbinix hemicellulosilytica gen. nov., sp. nov., is proposed based on phylogenetic analysis and physiological properties of the novel isolate. Strain T3/55T ( = DSM 29228T = CECT 8801T), represents the type strain of Herbinix hemicellulosilytica gen. nov., sp. nov.
Collapse
Affiliation(s)
- Daniela E. Koeck
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Wolfgang Ludwig
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Gerhard Wanner
- Department Biology I – Botany, Biozentrum der LMU München, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|