1
|
Wan Y, Xiong M, Zhu L, Ni H, Chen X, Liu B, He J. Salinibacterium soli sp. nov., isolated from lakeside soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 39073850 DOI: 10.1099/ijsem.0.006479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
A Gram-stain-positive, rod-shaped, non-spore-forming and non-motile bacterium, designated strain WY-16T. Growth was observed at 20-42 °C (optimum, 30 °C), pH 6-9 (optimum, pH 7) and salinity of 0-3 % (w/v; optimum, 1 %). Phylogenetic analysis based on genome sequences indicated that WY-16T was affiliated to the family Microbacteriaceae and most closely related to Salinibacterium xinjiangense and Salinibacterium amurskyense. The average nucleotide identity values between strain WY-16T and S. xinjiangense and S. amurskyense were 74.7 and 72.5 %, respectively. The digital DNA-DNA hybridization values between strain WY-16T and S. xinjiangense and S. amurskyense were 19.6 and 18.6 %, respectively. The predominant fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C16 : 0 10-methyl. The major menaquinones were MK-12, MK-13, MK-14 and MK-15. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid and one unidentified phospholipid. The cell-wall peptidoglycan contained 2,4-diaminobutyric acid as the diamino acid and ribose, rhamnose, glucose and galactose were the major cell-wall sugars. Based on phenotypic, genotypic and phylogenetic evidence, strain WY-16T represents a novel species in the genus Salinibacterium, for which the name Salinibacterium soli sp. nov. is proposed. The type strain is WY-16T (=GDMCC 1.4011T=JCM 36421T).
Collapse
Affiliation(s)
- Yingying Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Miaohuan Xiong
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Lingfeng Zhu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Haiyan Ni
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Xuelan Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Bin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
2
|
Liu L, Geng K, Lv Y, Zhang Q, Chen G, Cheng D, Shao J, He J, Shen Q. Ruicaihuangia caeni gen. nov., sp. nov., a novel taxon within the family Microbacteriaceae isolated from sludge. Int J Syst Evol Microbiol 2024; 74. [PMID: 38530752 DOI: 10.1099/ijsem.0.006302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
A Gram-stain-positive bacterium, designated YN-L-19T, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19T were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, 7.0) and 0-3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19T was affiliated to the family Microbacteriaceae and most closely related to Diaminobutyricimonas aenilata, Terrimesophilobacter mesophilus, Planctomonas deserti and Curtobacterium luteum. The major cellular fatty acids of YN-L-19T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19T and the related strains were 57.9-61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Ruicaihuangia caeni gen. nov., sp. nov. (type strain YN-L-19T=CCTCC AB 2022401T= KCTC 49935T) is proposed.
Collapse
Affiliation(s)
- Le Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| | - Keke Geng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yu Lv
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| | - Qi Zhang
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| | - Gang Chen
- An hui Neotec Co., Ltd., Huaibei, An hui 235100, PR China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiahui Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| | - Jian He
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qirong Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Toumi M, Whitman WB, Kyrpides NC, Woyke T, Wolf J, Neumann-Schaal M, Abbaszade G, Károly B, Tóth E. Antiquaquibacter oligotrophicus gen. nov., sp. nov., a novel oligotrophic bacterium from groundwater. Int J Syst Evol Microbiol 2023; 73. [PMID: 38108591 DOI: 10.1099/ijsem.0.006205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
In this study, a Gram-stain-positive, non-motile, oxidase- and catalase-negative, rod-shaped, bacterial strain (SG_E_30_P1T) that formed light yellow colonies was isolated from a groundwater sample of Sztaravoda spring, Hungary. Based on 16S rRNA phylogenetic and phylogenomic analyses, the strain was found to form a distinct linage within the family Microbacteriaceae. Its closest relatives in terms of near full-length 16S rRNA gene sequences are Salinibacterium hongtaonis MH299814 (97.72 % sequence similarity) and Leifsonia psychrotolerans GQ406810 (97.57 %). The novel strain grows optimally at 20-28 °C, at neutral pH and in the presence of NaCl (1-2 w/v%). Strain SG_E_30_P1T contains MK-7 and B-type peptidoglycan with diaminobutyrate as the diagnostic amino acid. The major cellular fatty acids are anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0, and the polar lipid profile is composed of diphosphatidylglycerol and phosphatidylglycerol, as well as an unidentified aminoglycolipid, aminophospholipid and some unidentified phospholipids. The assembled draft genome is a contig with a total length of 2 897 968 bp and a DNA G+C content of 65.5 mol%. Amino acid identity values with it closest relatives with sequenced genomes of <62.54 %, as well as other genome distance results, indicate that this bacterium represents a novel genus within the family Microbacteriaceae. We suggest that SG_E_30_P1T (=DSM 111415T=NCAIM B.02656T) represents the type strain of a novel genus and species for which the name Antiquaquibacter oligotrophicus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Marwene Toumi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - Bóka Károly
- Department of plant anatomy, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021; 9:microorganisms9030538. [PMID: 33807836 PMCID: PMC7998784 DOI: 10.3390/microorganisms9030538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Alexis Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Fernanda P. Cid
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid Ramírez
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid-Nicole Vasconez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Inaudis Álvarez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| |
Collapse
|
5
|
Li XJ, Wang CM, Feng XM, Liu SW, Qiao HX, Chang YL, Sun CH. Planctomonas psychrotolerans sp. nov., isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 2020; 70:5271-5279. [PMID: 32833615 DOI: 10.1099/ijsem.0.004408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A psychrotolerant actinobacterium, designated strain J5903T, was isolated from an alkaline soil sample from the rhizosphere of Suaeda salsa collected in desertification land surrounding Jiuliancheng Nur in Hebei Province, PR China. Cells of the isolate were Gram-stain-positive, aerobic, non-motile and non-spore-forming cocci. Strain J5903T grew optimally at 20‒25 °C, at pH 7.0‒7.5 and with <1 % (w/v) NaCl. The cell-wall peptidoglycan type was B2γ with d-2,4-diaminobutyric acid and l-2,4-diaminobutyric acid as diagnostic amino acids. The muramyl residue was acetyl type. The menaquinones were MK-11, MK-12, MK-10 and MK-13. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The major whole-cell fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The genomic DNA G+C content was 69.1 mol%. It shared the highest average nucleotide identity and digital DNA-DNA hybridization values with Planctomonas deserti 13S1-3T. Phylogenies based on genome sequence showed that strain J5903T and P. deserti 13S1-3T formed a robust cluster with high bootstrap support. Strain J5903T shared typical chemotaxonomic characteristics with P. deserti 13S1-3T. Combining the polyphasic taxonomic evidence, strain J5903T represents a novel species of the genus Planctomonas, for which the name Planctomonas psychrotolerans sp. nov. is proposed. The type strain is J5903T (=DSM 101894T=CGMCC 1.15523T).
Collapse
Affiliation(s)
- Xiao-Jun Li
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, PR China
| | - Chun-Miao Wang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, PR China
| | - Xue-Mei Feng
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hai-Xia Qiao
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, PR China
| | - Yue-Li Chang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
6
|
Zhuo Y, Jin CZ, Jin FJ, Li T, Kang DH, Oh HM, Lee HG, Jin L. Lacisediminihabitans profunda gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from freshwater sediment. Antonie van Leeuwenhoek 2019; 113:365-375. [PMID: 31691050 PMCID: PMC7033078 DOI: 10.1007/s10482-019-01347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/02/2019] [Indexed: 11/28/2022]
Abstract
A novel Gram-stain-positive bacterial strain, CHu50b-6-2T, was isolated from a 67-cm-long sediment core collected from the Daechung Reservoir at a water depth of 17 m, Daejeon, Republic of Korea. The cells of strain CHu50b-6-2T were aerobic non-motile and formed yellow colonies on R2A agar. The phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain formed a separate lineage within the family Microbacteriaceae, exhibiting 98.0%, 97.7% and 97.6% 16S rRNA gene sequence similarities to Glaciihabitans tibetensis KCTC 29148T, Frigoribacterium faeni KACC 20509T and Lysinibacter cavernae DSM 27960T, respectively. The phylogenetic trees revealed that strain CHu50b-6-2T did not show a clear affiliation to any genus within the family Microbacteriaceae. The chemotaxonomic results showed B1α type peptidoglacan containg 2, 4-diaminobutyric acid (DAB) as the diagnostic diamino acid, MK-10 as the predominant respiratory menaquinone, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified glycolipid as the major polar lipids, anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids, and a DNA G + C content of 67.3 mol%. The combined genotypic and phenotypic data showed that strain CHu50b-6-2T could be distinguished from all genera within the family Microbacteriaceae and represents a novel genus, Lacisediminihabitans gen. nov., with the name Lacisediminihabitans profunda sp. nov., in the family Microbacteriaceae. The type strain is CHu50b-6-2T (= KCTC 49081T = JCM 32673T).
Collapse
Affiliation(s)
- Ye Zhuo
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chun-Zhi Jin
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dong Hyo Kang
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Liu SW, Li FN, Zheng HY, Qi X, Huang DL, Xie YY, Sun CH. Planctomonas deserti gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from soil of the Taklamakan desert. Int J Syst Evol Microbiol 2018; 69:616-624. [PMID: 30387709 DOI: 10.1099/ijsem.0.003095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-positive, aerobic, irregular coccoid- to ovoid-shaped, non-spore-forming and motile bacterium, designated strain 13S1-3T, was isolated from a soil sample from the rhizosphere of Tamarix collected in the Taklamakan desert in Xinjiang Uygur Autonomous Region, PR China. The strain was examined by a polyphasic approach to clarify its taxonomic position. Strain 13S1-3T grew optimally at 28-30 °C, pH 7.0 and with 0-1 % (w/v) NaCl. The cell-wall peptidoglycan was of the B2γ type and contained d-alanine, d-glutamic acid, glycine, d-2,4-diaminobutyric acid and l-2,4-diaminobutyric acid. Ribose, xylose, glucose and galactose were detected as cell-wall sugars. The acyl type of the muramic acid was acetyl. The predominant menaquinones were MK-12, MK-11, MK-13 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified phospholipid. The major whole-cell fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 70.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 13S1-3T represented a member of the family Microbacteriaceae and showed the highest level of 16S rRNA gene sequence similarity with Frondihabitans australicus E1HC-02T (97.11 %). Phylogenetic trees revealed that 13S1-3T formed a distinct lineage with respect to closely related genera within the family Microbacteriaceae. On the basis of the results of phylogenetic, phenotypic and chemotaxonomic analyses, 13S1-3T is distinguishable from phylogenetically related genera in the family Microbacteriaceae, and represents a novel species of a new genus, for which the name Planctomonas deserti gen. nov., sp. nov. is proposed. The type strain is 13S1-3T (=KCTC 49115T=CGMCC 1.16554T).
Collapse
Affiliation(s)
- Shao-Wei Liu
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Fei-Na Li
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Hong-Yun Zheng
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.,2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Xin Qi
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Da-Lin Huang
- 2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, PR China
| | - Yun-Ying Xie
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Cheng-Hang Sun
- 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
8
|
Villalobos AS, Wiese J, Aguilar P, Dorador C, Imhoff JF. Subtercola vilae sp. nov., a novel actinobacterium from an extremely high-altitude cold volcano lake in Chile. Antonie van Leeuwenhoek 2017; 111:955-963. [PMID: 29214367 PMCID: PMC5945732 DOI: 10.1007/s10482-017-0994-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% >) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.
Collapse
Affiliation(s)
- Alvaro S Villalobos
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Techniker Str. 25, 6020, Innsbruck, Austria
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Si HL, Shi FX, Zhang LL, Yue HS, Wang HY, Zhao ZT. Subtercola lobariae sp. nov., an actinobacterium of the family Microbacteriaceae isolated from the lichen Lobaria retigera. Int J Syst Evol Microbiol 2016; 67:1516-1521. [PMID: 28005519 DOI: 10.1099/ijsem.0.001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinobacterium, designated strain 9583bT, was isolated from the lichen Lobaria retigera collected from Jiaozi Snow Mountain, Yunnan Province, China. Cells of strain 9583bT were Gram-stain-positive, aerobic, catalase-positive and oxidase-negative. The strain have a short rod-shaped, irregular morphology, and could grow at the temperature range of 4 to 28 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9583bT belonged to the genus Subtercola in the family Microbacteriaceae, and shared highest sequence similarity with the type strains of Subtercola frigoramans and Subtercola boreus (96.8 and 95.6 %, respectively). The peptidoglycan type was B2γ, with diaminobutyric acid as the diagnostic diamino acid. The polar lipids comprised of phosphatidylglycerol, diphosphatidylglycerol, five unidentified glycolipids and three unidentified phospholipids. The respiratory quinone was determined to be MK-10. While the major fatty acids (>5 %) of strain 9583bT were anteiso-C15 : 0, C14 : 0 2-OH and iso-C16 : 0, the 1,1-dimethoxy-alkanes included a-15 : 0 DMA, i-16 : 0 DMA, a-17 : 0 DMA and i-15 : 0 DMA. The genomic DNA G+C content of strain 9583bT was 66.8 mol%. On the basis of the phylogenetic, phenotypic and chemotaxonomic data in this study, strain 9583bT represents a novel species of the genus Subtercola, for which the name Subtercola lobariae sp. nov. is proposed. The type strain is 9583bT (=CGMCC 1.12976T=DSM 103962T).
Collapse
Affiliation(s)
- Hong-Li Si
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| | - Fei-Xiang Shi
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| | - Lu-Lu Zhang
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| | - Hong-Shan Yue
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| | - Hai-Ying Wang
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| | - Zun-Tian Zhao
- College of Life Sciences, Shandong Normal Univeristy, Jinan 250014, PR China
| |
Collapse
|
10
|
Bae KS, Kim MS, Lee JH, Kang JW, Kim DI, Lee JH, Seong CN. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria. J Microbiol 2016; 54:789-795. [PMID: 27888457 DOI: 10.1007/s12275-016-6446-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022]
Abstract
To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju, Gyeonggi, Jeonnam, Daejeon, and Chungnam. A large number of novel actinobacterial species continue to be discovered since the Korean government is encouraging the search for new bacterial species and researchers are endeavoring to find out novel strains from extreme or untapped environments.
Collapse
Affiliation(s)
- Kyung Sook Bae
- Biological Resource Center, KRIBB, Jeongeup, 56212, Republic of Korea
| | - Mi Sun Kim
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ji Hee Lee
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Joo Won Kang
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Dae In Kim
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ji Hee Lee
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Chi Nam Seong
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
11
|
Kong D, Guo X, Zhou S, Wang H, Wang Y, Zhu J, Dong W, Li Y, He M, Hu G, Zhao B, Ruan Z. Frigoribacterium salinisoli sp. nov., isolated from saline soil, transfer of Frigoribacterium mesophilum to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. Int J Syst Evol Microbiol 2016; 66:5252-5259. [PMID: 27654623 DOI: 10.1099/ijsem.0.001504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, short-rod, aerobic bacterium, designated as strain LAM9155T, was isolated from saline soil sample collected from Lingxian County, Shandong Province, PR China. The strain grew optimally at 25-30 °C, pH 7.0 and 0.5 % (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that strain LAM9155T belonged to the genus Frigoribacterium and was closely related to Frigoribacteriumendophyticum EGI 6500707T (99.4 %), Frigoribacteriumfaeni 801T (98.6 %) and Frigoribacteriummesophilum MSL-08T (96.2 %). The DNA-DNA hybridization values between strain LAM9155T and F. endophyticum JCM 30093T and between strain LAM9155T and F. faeni DSM 10309T were 40.2±2.1 and 32.8±1.6 %, respectively. The major fatty acids of LAM9155T were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall analysis showed the B-type peptidoglycan containing alanine, glutamate, glycine, serine and lysine and that the cell wall contained the sugars galactose and ribose. The genomic DNA G+C content of strain LAM9155T was 68.2 mol%. The predominant menaquinone was MK-9. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unknown glycolipid and four unknown lipids. Based on the DNA-DNA hybridization and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM9155T could be distinguished from the recognized species of the genus Frigoribacterium and was suggested to represent a novel species, for which the name Frigoribacterium salinisoli sp. nov. is proposed. The type strain is LAM9155T (=ACCC 19902T=JCM 30848T). Moreover, the transfer of F. mesophilum Dastager et al. 2008 to Parafrigoribacterium gen. nov. as Parafrigoribacterium mesophilum comb. nov. (type strain MSL-08T=DSM 19442T=KCTC 19311T) is also proposed.
Collapse
Affiliation(s)
- Delong Kong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Xiang Guo
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Shan Zhou
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Huimin Wang
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Jie Zhu
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Weiwei Dong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yanting Li
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China), Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Bingqiang Zhao
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| |
Collapse
|
12
|
Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 2016; 192:192-202. [PMID: 27664737 DOI: 10.1016/j.micres.2016.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
Snow ecosystems represent a large part of the Earth's biosphere and harbour diverse microbial communities. Despite our increased knowledge of snow microbial communities, the question remains as to their functional potential, particularly with respect to their role in adapting to and modifying the specific snow environment. In this work, we investigated the diversity and functional capabilities of microorganisms from 3 regions of East Antarctica, with respect to compounds present in snow and tested whether their functional signature reflected the snow environment. A diverse assemblage of bacteria (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Deinococcus-Thermus, Planctomycetes, Verrucomicrobia), archaea (Euryarchaeota), and eukarya (Basidiomycota, Ascomycota, Cryptomycota and Rhizaria) were detected through culture-dependent and -independent methods. Although microbial communities observed in the three snow samples were distinctly different, all isolates tested produced one or more of the following enzymes: lipase, protease, amylase, β-galactosidase, cellulase, and/or lignin modifying enzyme. This indicates that the snow pack microbes have the capacity to degrade organic compounds found in Antarctic snow (proteins, lipids, carbohydrates, lignin), thus highlighting their potential to be involved in snow chemistry.
Collapse
|
13
|
Tuo L, Guo L, Liu SW, Liu JM, Zhang YQ, Jiang ZK, Liu XF, Chen L, Zu J, Sun CH. Lysinibacter cavernae gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a karst cave. Int J Syst Evol Microbiol 2016; 65:3305-3312. [PMID: 26296577 DOI: 10.1099/ijsem.0.000415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, straight or slightly bent rod-shaped, non-motile, non-spore-forming bacterium, designated strain CC5-806T, was isolated from a soil sample collected from a wild karst cave in the Wulong region, Chongqing, PR China and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelium or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain CC5-806T grew optimally without NaCl at 20 °C and at pH 7.0. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain CC5-806T belonged to the family Microbacteriaceae and showed the highest levels of 16S rRNA gene sequence similarities with Frigoribacterium endophyticum EGI 6500707T (97.56 %), Frigoribacterium faeni 801T (97.53 %) and Glaciihabitans tibetensis MP203T (97.42 %). Phylogenetic trees revealed that strain CC5-806T did not show a clear affiliation to any genus within the family Microbacteriaceae. The DNA G+C content of strain CC5-806T was 62.6 mol%. The cell-wall peptidoglycan contained l-lysine as a diagnostic diamino acid. The predominant menaquinones were MK-11, MK-10 and MK-9. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, four unidentified phospholipids and other polar lipids were detected in the polar lipid extracts. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. On the basis of the phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain CC5-806T was distinguishable from phylogenetically related genera in the family Microbacteriaceae. It represents a novel species of a novel genus, for which the name Lysinibacter cavernae gen. nov., sp. nov. is proposed. The type strain is CC5-806T ( = DSM 27960T = CGMCC 1.14983T).
Collapse
Affiliation(s)
- Li Tuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Lin Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jia-Meng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhong-Ke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xian-Fu Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian Zu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|