1
|
Chen CC, Huang JL, Chen KJ, Kong MS, Hua MC, Yeh YM, Chang HJ. Comparison of 16S rRNA gene sequencing microbiota among children with serological IgE-mediated food hypersensitivity. Pediatr Res 2024; 95:241-250. [PMID: 37648747 DOI: 10.1038/s41390-023-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND We hypothesized that specific food hypersensitivity (FH) in children is linked to specific gut microbiota. The aim of our study was to quantify and evaluate differences in gut microbial composition among children with different IgE-mediated FH. METHODS Children (n = 81) aged 18 to 36 months were enrolled, fecal samples of 57 children with FH and 24 healthy children were evaluated using next-generation sequencing. Individual microbial diversity and composition were analyzed via targeting the 16 S rRNA gene hypervariable V3-V5 regions. RESULTS Children with IgE-mediated FH (in milk, egg white, soy) had significantly lower gut microbiota diversity and richness than healthy children. Children with IgE-mediated FH exhibited relatively high abundances of Firmicutes and relative underrepresentation of the phylum Bacteroidetes. We observed significant increases in relative abundances of Ruminococcaceae, Clostridiaceae, and Erysipelotrichaceae (p < 0.01, compared to control) in children with milk hypersensitivity and of Clostridiaceae and Erysipelotrichaceae (p < 0.01) in children with peanut hypersensitivity. We also found significant increases in the numbers of Clostridiaceae, Lachnospiraceae and Pasteurellaceae (p < 0.01) in children with egg white hypersensitivity. CONCLUSIONS These findings identify early evidence of different gut microbiota development/ differentiation in children with food hypersensitivity. Specific food hypersensitivities may be associated with compositional changes in intestinal microbiota. IMPACT These findings identify early evidence of different gut microbiota development/differentiation in children with food hypersensitivity. We built a gut microbial profile that could identify toddlers at risk for food hypersensitivity. Children with enriched Firmicutes (phylum) with partial different families may be associated with food hypersensitivity. Enriched family Clostridiaceae, Ruminococcaceae, Lachnospiraceae, or Erysipelotrichaceae in gut microbiota may be associated with specific food hypersensitivities (such as milk, egg white, peanut) in children.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Jing-Long Huang
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Kun-Jei Chen
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Man-Shan Kong
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Man-Chin Hua
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hung-Ju Chang
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
2
|
The fecal bacterial microbiome of the Kuhl's pipistrelle bat (Pipistrellus kuhlii) reflects landscape anthropogenic pressure. Anim Microbiome 2023; 5:7. [PMID: 36739423 PMCID: PMC9898988 DOI: 10.1186/s42523-023-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anthropogenic disturbance has the potential to negatively affect wildlife health by altering food availability and diet composition, increasing the exposure to agrochemicals, and intensifying the contact with humans, domestic animals, and their pathogens. However, the impact of these factors on the fecal microbiome composition of wildlife hosts and its link to host health modulation remains barely explored. Here we investigated the composition of the fecal bacterial microbiome of the insectivorous bat Kuhl's pipistrelle (Pipistrellus kuhlii) dwelling in four environmental contexts with different levels of anthropogenic pressure. We analyzed their microbiome composition, structure and diversity through full-length 16S rRNA metabarcoding using the nanopore long-read sequencer MinION™. We hypothesized that the bacterial community structure of fecal samples would vary across the different scenarios, showing a decreased diversity and richness in samples from disturbed ecosystems. RESULTS The fecal microbiomes of 31 bats from 4 scenarios were sequenced. A total of 4,829,302 reads were obtained with a taxonomic assignment percentage of 99.9% at genus level. Most abundant genera across all scenarios were Enterococcus, Escherichia/Shigella, Bacillus and Enterobacter. Alpha diversity varied significantly between the four scenarios (p < 0.05), showing the lowest Shannon index in bats from urban and intensive agriculture landscapes, while the highest alpha diversity value was found in near pristine landscapes. Beta diversity obtained by Bray-Curtis distance showed weak statistical differentiation of bacterial taxonomic profiles among scenarios. Furthermore, core community analysis showed that 1,293 genera were shared among localities. Differential abundance analyses showed that the highest differentially abundant taxa were found in near pristine landscapes, with the exception of the family Alcaligenaceae, which was also overrepresented in urban and intensive agriculture landscapes. CONCLUSIONS This study suggests that near pristine and undisturbed landscapes could promote a more resilient gut microbiome in wild populations of P. kuhlii. These results highlight the potential of the fecal microbiome as a non-invasive bioindicator to assess insectivorous bats' health and as a key element of landscape conservation strategies.
Collapse
|
3
|
McNally KL, Mott CR, Guertin JR, Bowen JL. Microbial communities of wild-captured Kemp’s ridley (Lepidochelys kempii) and green sea turtles (Chelonia mydas). ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Conservation efforts for endangered sea turtle species, such as Kemp’s ridley turtles Lepidochelys kempii and green turtles Chelonia mydas, may benefit from information on the microbial communities that contribute to host health. Previous studies examining host-associated microbiomes of these species have been limited in geographic region, life stage, and/or health. Here, we characterized the microbiome of the oral cavity and cloaca from wild-captured Kemp’s ridley and green turtles off the west coast of Florida, USA, by using Illumina sequencing to analyze the 16S rRNA gene. Microbial communities were distinct between body sites as well as between turtle species, suggesting that the turtle species is more important than the local environment in determining the microbiome of sea turtles. We identified the core microbiome for each species at each body site and determined that there were very few bacteria shared among the oral samples of both species, and no taxa co-occurred in the cloaca samples among both species. The core microbiome of the green turtle cloaca was primarily from the order Clostridiales, which plays an important role in digestion for other herbivorous species. Due to high prevalence of fibropapillomatosis in the green turtles (90%), we also investigated the correlation between the microbiome and the severity of fibropapillomatosis, and we identified changes in beta diversity associated with the total number of tumors. This study provides the first glimpse of the microbiome in 2 sympatric species of sea turtle and sheds an important species-specific light on the microbiome of these endangered species.
Collapse
Affiliation(s)
- KL McNally
- Animal Health Department, New England Aquarium, Boston, Massachusetts 02110, USA
- University of Massachusetts, Boston, Massachusetts 20125, USA
| | - CR Mott
- Inwater Research Group, Inc., Jensen Beach, Florida 34957, USA
| | - JR Guertin
- Inwater Research Group, Inc., Jensen Beach, Florida 34957, USA
| | - JL Bowen
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA
| |
Collapse
|
4
|
The virome of German bats: comparing virus discovery approaches. Sci Rep 2021; 11:7430. [PMID: 33795699 PMCID: PMC8016945 DOI: 10.1038/s41598-021-86435-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Bats are known to be reservoirs of several highly pathogenic viruses. Hence, the interest in bat virus discovery has been increasing rapidly over the last decade. So far, most studies have focused on a single type of virus detection method, either PCR, virus isolation or virome sequencing. Here we present a comprehensive approach in virus discovery, using all three discovery methods on samples from the same bats. By family-specific PCR screening we found sequences of paramyxoviruses, adenoviruses, herpesviruses and one coronavirus. By cell culture we isolated a novel bat adenovirus and bat orthoreovirus. Virome sequencing revealed viral sequences of ten different virus families and orders: three bat nairoviruses, three phenuiviruses, one orbivirus, one rotavirus, one orthoreovirus, one mononegavirus, five parvoviruses, seven picornaviruses, three retroviruses, one totivirus and two thymoviruses were discovered. Of all viruses identified by family-specific PCR in the original samples, none was found by metagenomic sequencing. Vice versa, none of the viruses found by the metagenomic virome approach was detected by family-specific PCRs targeting the same family. The discrepancy of detected viruses by different detection approaches suggests that a combined approach using different detection methods is necessary for virus discovery studies.
Collapse
|
5
|
Abstract
Bats have been gaining attention as potential reservoir hosts of numerous viruses pathogenic to animals and man. Issyk-Kul virus, a member of the family Nairoviridae, was first isolated in the 1970s from vespertilionid bats in Central Asia. Issyk-Kul virus has been described as human-pathogenic virus, causing febrile outbreaks in humans with headaches, myalgia and nausea. Here we describe the detection of a novel strain of Issyk-Kul virus from Eptesicus nilssonii in Germany. This finding indicates for the first time the prevalence of these zoonotic viruses in Europe.
Collapse
|
6
|
Christensen H, Bisgaard M. Classification of genera of Pasteurellaceae using conserved predicted protein sequences. Int J Syst Evol Microbiol 2018; 68:2692-2696. [DOI: 10.1099/ijsem.0.002860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Henrik Christensen
- 1Department of Veterinary Animal Sciences, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | | |
Collapse
|
7
|
Newman MM, Kloepper LN, Duncan M, McInroy JA, Kloepper JW. Variation in Bat Guano Bacterial Community Composition With Depth. Front Microbiol 2018; 9:914. [PMID: 29867825 PMCID: PMC5958644 DOI: 10.3389/fmicb.2018.00914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Bats are known to be reservoirs for a variety of mammalian pathogens, including viruses, fungi, and bacteria. Many of the studies examining the microbial community inhabiting bats have investigated bacterial taxa found within specific bat tissues and isolated bat guano pellets, but relatively few studies have explored bacterial diversity within bat guano piles. In large bat caves, bat guano can accumulate over time, creating piles several meters deep and forming complex interactions with coprophagous organisms in a habitat with low light and oxygen. As the guano decays, the nutrient composition changes, but the bacterial communities deep within the pile have not been characterized. Here, we assess the bacterial communities across varying depths within the guano pile using both culture-independent and culture-dependent methods. We found that although similar taxa are found throughout the guano pile, the relative abundances of taxa within the pile shift, allowing certain taxa to dominate the bacterial community at varying depths. We also identified potential bacterial functions being performed within the bat guano as various depths within the pile and found little variation in terms of the dominant predicted functions, suggesting that although the relative abundances of bacterial taxa are changing, the functions being performed are similar. Additionally, we cultured 15 different bacterial species, including 2 not present in our culture-independent analysis, and discuss the pathogenicity potential of these taxa. This study represents the first characterization of the bacterial community from the extreme environment within a bat guano pile and demonstrates the potential for bat caves as resources for identifying new bacterial species.
Collapse
Affiliation(s)
- Molli M. Newman
- Department of Biology, LaGrange College, LaGrange, GA, United States
| | - Laura N. Kloepper
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Makenzie Duncan
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Adhikary S, Bisgaard M, Nicklas W, Christensen H. Reclassification of Bisgaard taxon 5 as Caviibacterium pharyngocola gen. nov., sp. nov. and Bisgaard taxon 7 as Conservatibacter flavescens gen. nov., sp. nov. Int J Syst Evol Microbiol 2018; 68:643-650. [PMID: 29303698 DOI: 10.1099/ijsem.0.002558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 29 strains mainly from guinea pigs were investigated by a polyphasic approach that included previously published data. The strains were classified as Bisgaard taxa 5 and 7 by comparison of phenotypic characteristics and the strains showed typical cultural characteristics for members of family Pasteurellaceae and the strains formed two monophyletic groups based on 16S rRNA gene sequence comparison. Partial rpoB sequence analysis as well as published data on DNA-DNA hybridization showed high genotypic relationships within both groups. A new genus with one species, Caviibacterium pharyngocola gen. nov., sp. nov., is proposed to accommodate members of taxon 5 of Bisgaard, whereas members of taxon 7 are proposed as Conservatibacter flavescens gen. nov., sp. nov. The two genera are clearly separated by phenotype from each other and from existing genera of the family Pasteurellaceae. The type strain of Caviibacterium pharyngocola is 7.3T (=CCUG 16493T=DSM 105478T) and the type strain of Conservatibacter flavescens is 7.4T (=CCUG 24852T=DSM 105479T=HIM 794-7T), both were isolated from the pharynx of guinea pigs.
Collapse
Affiliation(s)
- Sadhana Adhikary
- Department of Veterinary Animal Sciences, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | - Magne Bisgaard
- Professor emeritus, Horsevænget 40, Viby Sjælland, Denmark
| | - Werner Nicklas
- Microbiological Diagnostics, German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - Henrik Christensen
- Department of Veterinary Animal Sciences, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Adhikary S, Nicklas W, Bisgaard M, Boot R, Kuhnert P, Waberschek T, Aalbæk B, Korczak B, Christensen H. Rodentibacter gen. nov. including Rodentibacter pneumotropicus comb. nov., Rodentibacter heylii sp. nov., Rodentibacter myodis sp. nov., Rodentibacter ratti sp. nov., Rodentibacter heidelbergensis sp. nov., Rodentibacter trehalosifermentans sp. nov., Rodentibacter rarus sp. nov., Rodentibacter mrazii and two genomospecies. Int J Syst Evol Microbiol 2017. [DOI: 10.1099/ijsem.0.001866] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sadhana Adhikary
- Department of Veterinary Disease Biology, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | - Werner Nicklas
- Microbiological Diagnostics, German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - Magne Bisgaard
- Professor emeritus, Horsevænget 40, Viby Sjælland, Denmark
| | - Ron Boot
- Mr. Tripkade 51, 3571 SW, Utrecht, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggass-Strasse 122, CH-3001 Bern, Switzerland
| | - Torsten Waberschek
- Microbiological Diagnostics, German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - Bent Aalbæk
- Department of Veterinary Disease Biology, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | - Bozena Korczak
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggass-Strasse 122, CH-3001 Bern, Switzerland
| | - Henrik Christensen
- Department of Veterinary Disease Biology, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
10
|
Abstract
Bats are ancient and among the most diverse mammals in terms of species richness, diet and habitat preferences, characteristics that may contribute to a high diversity of infectious agents. During the past two decades, the interest in bats and their microorganisms largely increased because of their role as reservoir hosts or carriers of important pathogens. Rapid advances in microbial detection and characterisation by high-throughput sequencing technologies have led to large genetic data sets but also improved our possibilities and speed of identifying unknown infectious agents. Assessing the risk of infectious diseases in bats and their pathological manifestation, however, is still challenging because of limited access to appropriate material and field data, and continuing limitations in wildlife diagnostics and the interpretation of genetic results. As a consequence, emerging pathogens can suddenly appear with devastating effects as happened for the white nose syndrome. To date, much research on bats and infectious agents still focusses on viruses, whilst the knowledge on bacteria and their role in disease is comparatively low.
Collapse
|
11
|
Testudinibacter aquarius gen. nov., sp. nov., a member of the family Pasteurellaceae isolated from the oral cavity of freshwater turtles. Int J Syst Evol Microbiol 2016; 66:567-573. [DOI: 10.1099/ijsem.0.000759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Nicklas W, Bisgaard M, Aalbæk B, Kuhnert P, Christensen H. Reclassification of Actinobacillus muris as Muribacter muris gen. nov., comb. nov. Int J Syst Evol Microbiol 2015; 65:3344-3351. [DOI: 10.1099/ijsem.0.000417] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To reinvestigate the taxonomy of [Actinobacillus] muris, 474 strains, mainly from mice and rats, were characterized by phenotype and 130 strains selected for genotypic characterization by 16S rRNA and partial rpoB gene sequencing. The type strain was further investigated by whole-genome sequencing. Phylogenetic analysis of the DNA sequences showed one monophyletic group with intragroup similarities of 96.7 and 97.2 % for the 16S rRNA and rpoB genes, respectively. The highest 16S rRNA gene sequence similarity to a taxon with a validly published name outside the group was 95.9 %, to the type strain of [Pasteurella] pneumotropica. The closest related taxon based on rpoB sequence comparison was ‘Haemophilus influenzae-murium’, with 88.4 % similarity. A new genus and a new combination, Muribacter muris gen. nov., comb. nov., are proposed based on a distinct phylogenetic position based on 16S rRNA and rpoB gene sequence comparisons, with major divergence from the existing genera of the family Pasteurellaceae. The new genus has the characteristics of [A.] muris with the emendation that acid formation from ( − )-d-mannitol and hydrolysis of aesculin are variable, while the α-glucosidase test is positive. There is no requirement for exogenously supplied NAD (V factor) for the majority of strains investigated; however, one strain was found to require NAD. The major fatty acids of the type strain of Muribacter muris were C14 : 0, C14 : 0 3-OH/iso-C16 : 1 I, C16 : 1ω7c and C16 : 0, which is in line with most genera of the Pasteurellaceae. The type strain of Muribacter muris is CCUG 16938T ( = NCTC 12432T = ATCC 49577T).
Collapse
Affiliation(s)
- Werner Nicklas
- Microbiological Diagnostics, German Cancer Research Centre, D-69120 Heidelberg, Germany
| | - Magne Bisgaard
- Professor emeritus, Horsevænget 40, DK-4130 Viby Sjælland, Denmark
| | - Bent Aalbæk
- Department of Veterinary Disease Biology, VetSchool, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Laenggass-Strasse 122, CH-3001 Bern, Switzerland
| | - Henrik Christensen
- Department of Veterinary Disease Biology, VetSchool, University of Copenhagen, 4 Stigbøjlen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
13
|
Johanne Hansen M, Strøm Braaten M, Miki Bojesen A, Christensen H, Sonne C, Dietz R, Frost Bertelsen M. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).
Collapse
Affiliation(s)
- Mie Johanne Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| | - Mira Strøm Braaten
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Henrik Christensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Christian Sonne
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Frederiksborgvej 399, PO Box 358, Aarhus University, 4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Faculty of Science and Technology, Arctic Research Centre, Frederiksborgvej 399, PO Box 358, Aarhus University, 4000 Roskilde, Denmark
| | - Mads Frost Bertelsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| |
Collapse
|
14
|
Phylogenomic and molecular demarcation of the core members of the polyphyletic pasteurellaceae genera actinobacillus, haemophilus, and pasteurella. Int J Genomics 2015; 2015:198560. [PMID: 25821780 PMCID: PMC4363679 DOI: 10.1155/2015/198560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.
Collapse
|