1
|
Peña-Salinas ME, Speth DR, Utter DR, Spelz RM, Lim S, Zierenberg R, Caress DW, Núñez PG, Vázquez R, Orphan VJ. Thermotogota diversity and distribution patterns revealed in Auka and JaichMaa 'ja 'ag hydrothermal vent fields in the Pescadero Basin, Gulf of California. PeerJ 2024; 12:e17724. [PMID: 39175749 PMCID: PMC11340630 DOI: 10.7717/peerj.17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.
Collapse
Affiliation(s)
- Manet E. Peña-Salinas
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Daan R. Speth
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Daniel R. Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Ronald M. Spelz
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Sujung Lim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| | - Robert Zierenberg
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States
| | - David W. Caress
- Science Division, Monterey Bay Aquarium Research Institute, Moss Landing, California, United States
| | - Patricia G. Núñez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Roberto Vázquez
- Laboratorio de Astrobiología, Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States
| |
Collapse
|
2
|
Genome-wide analysis of Keratinibaculum paraultunense strain KD-1 T and its key genes and metabolic pathways involved in the anaerobic degradation of feather keratin. Arch Microbiol 2022; 204:634. [PMID: 36127480 DOI: 10.1007/s00203-022-03226-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Keratinibaculum paraultunense strain KD-1 T (= JCM 18769 T = DSM 26752 T) is a strictly anaerobic rod-shaped bacterium. Under optimal conditions, feather keratin can be completely degraded by strain KD-1 within 24 h. Genomic sequencing showed that the genome was a single circular chromosome consisting of 2,307,997 base pairs (bp), with an average G + C content of 29.8% and no plasmids. A total of 2308 genes were annotated, accounting for 88.87% of the genomic sequence, and 1495 genes were functionally annotated. Among these, genes Kpa0144, Kpa0540, and Kpa0541 encoding the thioredoxin family members were identified, and may encode the potential disulfide reductases, with redox activity for protein disulfide bonds. Two potential keratinase-encoding genes, Kpa1675 and Kpa2139, were also identified, and corresponded to the ability of strain KD-1 to hydrolyze keratin. Strain KD-1 encoded genes involved in the heterotrophic metabolic pathways of 14 amino acids and various carbohydrates. The metabolic pathways for amino acid and carbohydrate metabolism were mapped in strain KD-1 based on KEGG annotations. The complete genome of strain KD-1 provided fundamental data for the further investigation of its physiology and genetics.
Collapse
|
3
|
Chen Y, He Y, Shao Z, Han X, Chen D, Yang J, Zeng X. Thermosipho ferrireducens sp.nov., an anaerobic thermophilic iron(III)-reducing bacterium isolated from a deep-sea hydrothermal sulfide deposits. Int J Syst Evol Microbiol 2021; 71. [PMID: 34328826 DOI: 10.1099/ijsem.0.004929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, iron-reducing bacterium strain JL129W03T (=KCTC 15905T=MCCC 1A14213T) was isolated from a sulfide sample collected from the Daxi hydrothermal field (60.5° E, 6.4° N, 2919 m depth) on the Carlsberg Ridge, northwest Indian Ocean. Cells grew at 55-75 °C(optimum, 70 °C), at pH 6.0-9.0 (optimum, pH 6.0-7.0) and at NaCl concentrations of 1.5-4.5 % (w/v; optimum 3.0 %). Under optimal growth conditions, the generation time was around 85 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, carbohydrates, organic acids and one amino acid. It was anaerobic and facultatively dependent on elemental sulphur and various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulphate, thiosulfate or nitrate. The G+C content of its genomic DNA was 34.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that its closest relative was Thermosipho atlanticus DV1140T with 95.81 % 16S rRNA sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Thermosipho, for which the name Thermosipho ferrireducens sp. nov. is proposed. The type strain is strain JL129W03T (=KCTC 15905T;=MCCC 1A14213T).
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, Hubei, PR China
| | - Yang He
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, No. 36, Baocubei Road, Hangzhou 310012, Zhejiang, PR China
| | - Danling Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, Hubei, PR China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, PR China
| |
Collapse
|
4
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
5
|
Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C, Manzo E, Fontana A, d’Ippolito G. Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. Int J Mol Sci 2020; 22:ijms22010341. [PMID: 33396970 PMCID: PMC7795431 DOI: 10.3390/ijms22010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
The phylum Thermotogae is composed of a single class (Thermotogae), 4 orders (Thermotogales, Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae, Kosmotogaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera. They have been isolated from extremely hot environments whose characteristics are reflected in the metabolic and phenotypic properties of the Thermotogae species. The metabolic versatility of Thermotogae members leads to a pool of high value-added products with application potentials in many industry fields. The low risk of contamination associated with their extreme culture conditions has made most species of the phylum attractive candidates in biotechnological processes. Almost all members of the phylum, especially those in the order Thermotogales, can produce bio-hydrogen from a variety of simple and complex sugars with yields close to the theoretical Thauer limit of 4 mol H2/mol consumed glucose. Acetate, lactate, and L-alanine are the major organic end products. Thermotagae fermentation processes are influenced by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials of Thermotogae and promote their applications in industry. This article gives an overview of how these operational parameters could impact Thermotogae fermentation in terms of sugar consumption, hydrogen yields, and organic acids production.
Collapse
Affiliation(s)
- Mariamichela Lanzilli
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Nunzia Esercizio
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Marco Vastano
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Carmela Gallo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
- Correspondence: ; Tel.: +39-081-8675096
| |
Collapse
|
6
|
Podosokorskaya OA, Kochetkova TV, Novikov AA, Toshchakov SV, Elcheninov AG, Kublanov IV. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia. Syst Appl Microbiol 2020; 43:126126. [DOI: 10.1016/j.syapm.2020.126126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023]
|
7
|
Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline. Bioelectrochemistry 2020; 132:107406. [DOI: 10.1016/j.bioelechem.2019.107406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/19/2022]
|
8
|
Thermotogales origin scenario of eukaryogenesis. J Theor Biol 2020; 492:110192. [PMID: 32044287 DOI: 10.1016/j.jtbi.2020.110192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
How eukaryotes were generated is an enigma of evolutionary biology. Widely accepted archaeal-origin eukaryogenesis scenarios, based on similarities of genes and related characteristics between archaea and eukaryotes, cannot explain several eukaryote-specific features of the last eukaryotic common ancestor, such as glycerol-3-phosphate-type membrane lipids, large cells and genomes, and endomembrane formation. Thermotogales spheroids, having multicopy-integrated large nucleoids and producing progeny in periplasm, may explain all of these features as well as endoplasmic reticulum-type signal cleavage sites, although they cannot divide. We hypothesize that the progeny chromosome is formed by random joining small DNAs in immature progeny, followed by reorganization by mechanisms including homologous recombination enabled with multicopy-integrated large genome (MILG). We propose that Thermotogales ancestor spheroids came to divide owing to the archaeal cell division genes horizontally transferred via virus-related particles, forming the first eukaryotic common ancestor (FECA). Referring to the hypothesis, the archaeal information-processing system would have been established in FECA by random joining DNAs excised from the MILG, which contained horizontally transferred archaeal and bacterial DNAs, followed by reorganization by the MILG-enabled homologous recombination. Thus, the large genome may have been a prerequisite, but not a consequence, of eukaryogenesis. The random joining of DNAs likely provided the basic mechanisms for eukaryotic evolution: producing the diversity by the formations of supergroups, novel genes, and introns that are involved in exon shuffling.
Collapse
|
9
|
Haverkamp THA, Geslin C, Lossouarn J, Podosokorskaya OA, Kublanov I, Nesbø CL. Thermosipho spp. Immune System Differences Affect Variation in Genome Size and Geographical Distributions. Genome Biol Evol 2018; 10:2853-2866. [PMID: 30239713 PMCID: PMC6211235 DOI: 10.1093/gbe/evy202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Thermosipho species inhabit thermal environments such as marine hydrothermal vents, petroleum reservoirs, and terrestrial hot springs. A 16S rRNA phylogeny of available Thermosipho spp. sequences suggested habitat specialists adapted to living in hydrothermal vents only, and habitat generalists inhabiting oil reservoirs, hydrothermal vents, and hotsprings. Comparative genomics of 15 Thermosipho genomes separated them into three distinct species with different habitat distributions: The widely distributed T. africanus and the more specialized, T. melanesiensis and T. affectus. Moreover, the species can be differentiated on the basis of genome size (GS), genome content, and immune system composition. For instance, the T. africanus genomes are largest and contained the most carbohydrate metabolism genes, which could explain why these isolates were obtained from ecologically more divergent habitats. Nonetheless, all the Thermosipho genomes, like other Thermotogae genomes, show evidence of genome streamlining. GS differences between the species could further be correlated to differences in defense capacities against foreign DNA, which influence recombination via HGT. The smallest genomes are found in T. affectus that contain both CRISPR-cas Type I and III systems, but no RM system genes. We suggest that this has caused these genomes to be almost devoid of mobile elements, contrasting the two other species genomes that contain a higher abundance of mobile elements combined with different immune system configurations. Taken together, the comparative genomic analyses of Thermosipho spp. revealed genetic variation allowing habitat differentiation within the genus as well as differentiation with respect to invading mobile DNA.
Collapse
Affiliation(s)
- Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway.,Norwegian Veterinary Institute, Oslo, Norway
| | - Claire Geslin
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Université de Bretagne Occidentale (UBO), Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, Plouzané, France
| | - Julien Lossouarn
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Université de Bretagne Occidentale (UBO), Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, Plouzané, France
| | - Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Camilla L Nesbø
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|
11
|
Jiang L, L'Haridon S, Jebbar M, Xu H, Alain K, Shao Z. Complete genome sequence and whole-genome phylogeny of Kosmotoga pacifica type strain SLHLJ1 T from an East Pacific hydrothermal sediment. Stand Genomic Sci 2017; 12:3. [PMID: 28074121 PMCID: PMC5217533 DOI: 10.1186/s40793-016-0214-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/10/2016] [Indexed: 12/02/2022] Open
Abstract
Kosmotoga pacifica strain SLHLJ1T is a thermophilic chemoorganoheterotrophic bacterium isolated from a deep-sea hydrothermal sediment. It belongs to the physiologically homogeneous Thermotogaceae family. Here, we describe the phenotypic features of K. pacifica together with its genome sequence and annotation. The chromosome has 2,169,170 bp, organized in one contig. A total of 1897 candidate protein-encoding genes and 177 RNA genes were identified. The 16S rRNA gene sequence of this strain is distantly related to sequences of some relatives classified in the same genus (K. olearia 7.02% and K. shengliensis 7.83%), with dissimilarity percentages close to the threshold generally described for genus delineation. Nevertheless, the percentage of conserved proteins (POCP), which is much higher than 50% (around 70%), together with phenotypic features of the isolates, confirm the affiliation all Kosmotoga species described so far to the same genus.
Collapse
Affiliation(s)
- Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, 361005 China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005 China ; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005 China
| | - Stéphane L'Haridon
- Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; CNRS, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Brest-Iroise, BP70, 29 280 Plouzané, France
| | - Mohamed Jebbar
- Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; CNRS, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Brest-Iroise, BP70, 29 280 Plouzané, France
| | - Hongxiu Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, 361005 China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005 China ; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005 China
| | - Karine Alain
- CNRS, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France ; Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Brest-Iroise, BP70, 29 280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, 361005 China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005 China ; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005 China
| |
Collapse
|